
1

The Nutanix Bible
by Steven Poitras

2

The Nutanix Bible

Foreword
Introduction

Part I - A Brief Lesson in History ...11
 1.1 The Evolution of the Datacenter ...11
 1.1.1 The Era of the Mainframe ...11
 1.1.2 The Move to Stand-Alone Servers ..11
 1.1.3 Centralized Storage ...11
 1.1.4 The Introduction of Virtualization ...12
 1.1.5 Virtualization Matures ..12
 1.1.6 Solid State Disks (SSDs) ..12
 1.1.7 In Comes Cloud ..13
 1.1.8 Cloud Classifications ..13
 1.1.9 Shift IT Focus ..13

 1.2 The Importance of Latency ...14
 1.2.1 Looking at the Bandwidth ...14
 1.2.2 The Impact to Memory Latency ..15

 1.3 Book of Web-Scale ...15
 1.3.1 Hyper-Convergence ...16
 1.3.2 Software-Defined Intelligence ..16
 1.3.3 Distributed Autonomous Systems ..16
 1.3.4 Incremental and linear scale out ..17
 1.3.5 Making Sense of It All ...17

Part II - Book of Prism ..18
 2.1 Design Methodology and Iterations ..18

 2.2 Architecture ..18
 2.2.1 Prism Services ..19
 2.2.2 Prism Port ...20

 2.3 Navigation ...20
 2.3.1 Prism Central ...20
 2.3.2 Prism Element ...21
 2.3.3 Keybord Shortcut ...22

 2.4 Usage and Troubleshooting ...22
 2.4.1 Nutanix Software Upgrade ..22

Table Of Contents

3

 2.4.2 Hypervisor Upgrade ..25
 2.4.3 Cluster Expansion (add node) ...27
 2.4.4 Capacity Planning ...31

 2.5 APIs and Interfaces ..32
 2.5.1 ACLI ...33
 2.5.2 NCLI ...36
 2.5.3 PowerShell CMDlets ..39

 2.6 Integrations ...42
 2.6.1 OpenStack ..42
 2.6.1.1 OpenStack Components ..44
 2.6.1.2 Design and Deployment ...48
 2.6.1.3 Services Design and Scaling ...49
 2.6.1.4 Deployment ..51
 2.6.1.5 Troubleshooting & Advanced Administration55

Part III - Book of Acropolis ..57
 3.1 Architecture ..57
 3.1.1 Converged Platform ..58
 3.1.2 Software-Defined ...59
 3.1.3 Cluster Components ...60
 3.1.4 Acropolis Services ...61
 3.1.5 Drive Breakdown ..62

 3.2 Distributed Storage Fabric ..63
 3.2.1 Data Structure ...64
 3.2.2 I/O Path Overview ..66
 3.2.3 Scalable Metadata ..68
 3.2.4 Data Protection ...69
 3.2.5 Availability Domains ..70
 3.2.6 Data Path Resiliency ..75
 3.2.7 Capacity Optimization ..77
 3.2.7.1 Erasure Coding ...78
 3.2.7.2 Compression ...80
 3.2.7.3 Elastic Dedupe Engine ...82
 3.2.8 Storage Tiering and Prioritization ..84
 3.2.9 Disk Balancing ...86
 3.2.10 Snapshots and Clones ..88
 3.2.11 Networking and I/O ..90
 3.2.12 Data Locality .. 90
 3.2.13 Shadow Clones ...91
 3.2.14 Storage Layers and Monitoring ...92

4

The Nutanix Bible

 3.3 Services ..94
 3.3.1 Nutanix Guest Tools (NGT) ..94
 3.3.2 OS Customization ..99
 3.3.3 Block Services ..103
 3.3.4 File Services ..108
 3.3.5 Container Services ...112

 3.4 Backup and Disaster Recovery ..116
 3.4.1 Implementation Constructs ...116
 3.4.2 Protecting Entities ...117
 3.3.3 Backup and Restore ..119
 3.3.4 App Consistent Snapshots ..121
 3.4.5 Replication and Disaster Recovery (DR) ..124
 3.4.6 Cloud Connect ..127
 3.4.7 Metro Availability ..128

 3.5 Application Mobility Fabric - coming soon! ..

 3.6 Administration ...130
 3.6.1 Important Pages ..130
 3.6.2 Cluster Commands ..131
 3.6.3 Metrics and Thresholds ...135
 3.6.4 Gflags ...135
 3.6.5 Troubleshooting & Advanced Administration ..135
 3.6.5.1 Using the 2009 Page (Stargate) ..136
 3.6.5.2 Using the 2009/vdisk_stats Page ...138
 3.6.5.3 Using the 2010 Page (Curator) ...141

Part IV - Book of AHV ...145
 4.1 Architecture ..145
 4.1.1 Node Architecture ..145
 4.1.2 KVM Architecture ..145
 4.1..3 Configuration Maximums and Scalability ..146
 4.1.4 Networking ..146
 4.1.4.1 VM NIC Types ...147

 4.2 How It Works ...147
 4.2.1 iSCSI Multi-pathing ...147
 4.2.2 IP Address Management ..148
 4.2.3 VM High Availability (HA) ..149
 4.2.3.1 Reserve Hosts ...150
 4.2.3.2 Reserve Segments ..151

 4.3 Administration ..152
 4.3.1 Important Pages ..152

130

5

Services

Nutanix Guest Tools (NGT)

OS Customization

Block Services

File Services

Container Services

Backup and Disaster Recovery

Implementation Constructs

Protecting Entities

Backup and Restore

App Consistent Snapshots

Replication and Disaster Recovery (DR)

Cloud Connect

Metro Availability

Application Mobility Fabric - coming soon!

 4.3.2 Command Reference ...152
 4.3.3 Metrics and Thresholds ...154
 4.3.4 Troubleshooting & Advanced Administration ..154

Part V - Book of vSphere ..155
 5.1 Architecture ...155
 5.1.1 Node Architecture ..155
 5.1.2 Configuration Maximums and Scalability ..155
 5.1.3 Networking ..155

 5.2 How It Works ..156
 4.2.1 Array Offloads – VAAI ..156
 4.2.2 CVM Autopathing aka Ha.py ..157

 5.3 Administration ..158
 5.3.1 Important Pages ..158
 5.3.2 Command Reference ...158
 5.3.3 Metrics and Thresholds ...159
 5.3.4 Troubleshooting & Advanced Administration ..159

Part VI - Book of Hyper-V ...160
 6.1 Architecture ..160
 6.1.1 Node Architecture ...160
 6.1.2 Configuration Maximums and Scalability ..160
 6.1.3 Networking ...160

 6.2 How It Works ..161
 6.2.1 Array Offloads – ODX ...161

 6.3 Administration ..162
 6.3.1 Important Pages ..162
 6.3.2 Command Reference ...162
 6.3.3 Metrics and Thresholds ..163
 6.3.4 Troubleshooting & Advanced Administration ..163
Afterword ..163

Copyright (c) 2016: The Nutanix Bible and NutanixBible.com, 2016. Unauthorized use and/or duplication of this material
without express and written permission from this blog’s author and/or owner is strictly prohibited. Excerpts and links may
be used, provided that full and clear credit is given to Steven Poitras and NutanixBible.com with appropriate and specific
direction to the original content.

6

The Nutanix Bible

 am honored to write a foreword for this book that we’ve
come to call “The Nutanix Bible.” First and foremost, let me address
the name of the book, which to some would seem not fully inclusive
vis-à-vis their own faiths, or to others who are agnostic or atheist.
There is a Merriam Webster meaning of the word “bible” that is not
literally about scriptures: “a publication that is preeminent especially
in authoritativeness or wide readership”. And that is how you should
interpret its roots. It started being written by one of the most
humble yet knowledgeable employees at Nutanix, Steven Poitras,
our first Solution Architect who continues to be authoritative on
the subject without wielding his “early employee” primogeniture.
Knowledge to him was not power -- the act of sharing that
knowledge is what makes him eminently powerful in this company.
Steve epitomizes culture in this company -- by helping everyone
else out with his authority on the subject, by helping them automate
their chores in Power Shell or Python, by building insightful
reference architectures (that are beautifully balanced in both
content and form), by being a real-time buddy to anyone needing
help on Yammer or Twitter, by being transparent with engineers on
the need to self-reflect and self-improve, and by being ambitious.

 When he came forward to write a blog, his big dream was
to lead with transparency, and to build advocates in the field who
would be empowered to make design trade-offs based on this
transparency. It is rare for companies to open up on design and
architecture as much as Steve has with his blog. Most open source
companies -- who at the surface might seem transparent because
their code is open source -- never talk in-depth about design, and
“how it works” under the hood. When our competitors know about
our product or design weaknesses, it makes us stronger -- because
there is very little to hide, and everything to gain when something
gets critiqued under a crosshair. A public admonition of a feature
trade-off or a design decision drives the entire company on Yammer
in quick time, and before long, we’ve a conclusion on whether it
is a genuine weakness or a true strength that someone is fear-
mongering on. Nutanix Bible, in essence, protects us from drinking
our own kool aid. That is the power of an honest discourse with our
customers and partners.

Dheeraj Pandey

I

Foreword

7

 This ever-improving artifact, beyond being authoritative,
is also enjoying wide readership across the world. Architects,
managers, and CIOs alike, have stopped me in conference hallways
to talk about how refreshingly lucid the writing style is, with some
painfully detailed illustrations, visio diagrams, and pictorials. Steve
has taken time to tell the web-scale story, without taking shortcuts.
Democratizing our distributed architecture was not going to be
easy in a world where most IT practitioners have been buried in
dealing with the “urgent”. The Bible bridges the gap between IT
and DevOps, because it attempts to explain computer science and
software engineering trade-offs in very simple terms. We hope that
in the coming 3-5 years, IT will speak a language that helps them
get closer to the DevOps’ web-scale jargon.

 With this first edition, we are converting Steve’s blog into a
book. The day we stop adding to this book is the beginning of the
end of this company. I expect each and everyone of you to keep
reminding us of what brought us this far: truth, the whole truth,
and nothing but the truth, will set you free (from complacency and
hubris).

Keep us honest.

Dheeraj Pandey
CEO, Nutanix

8

The Nutanix Bible

Stuart Miniman

 sers today are constantly barraged by new technologies.
There is no limit of new opportunities for IT to change to a “new
and better way”, but the adoption of new technology and more
importantly, the change of operations and processes is difficult.
Even the huge growth of open source technologies has been
hampered by lack of adequate documentation. Wikibon was
founded on the principal that the community can help with this
problem and in that spirit, The Nutanix Bible, which started as a
blog post by Steve Poitras, has become a valuable reference point
for IT practitioners that want to learn about hypercovergence and
web-scale principles or to dig deep into Nutanix and hypervisor
architectures. The concepts that Steve has written about are
advanced software engineering problems that some of the smartest
engineers in the industry have designed a solution for. The book
explains these technologies in a way that is understandable to IT
generalists without compromising the technical veracity.

 The concepts of distributed systems and software-led
infrastructure are critical for IT practitioners to understand. I
encourage both Nutanix customers and everyone who wants
to understand these trends to read the book. The technologies
discussed here power some of the largest datacenters in the world.

Stuart Miniman
Principal Research Contributor, Wikibon

U

Foreword

9

Steven Poitras

Introduction

 elcome to The Nutanix Bible!

 I work with the Nutanix platform on a daily basis – trying to
find issues, push its limits as well as administer it for my production
benchmarking lab. This item is being produced to serve as a living
document outlining tips and tricks used every day by myself and a
variety of engineers here at Nutanix.

NOTE: What you see here is an under the covers look at how things
work. With that said, all topics discussed are abstracted by Nutanix
and knowledge isn’t required to successfully operate a Nutanix
environment!

Enjoy!

Steven Poitras
Principal Solutions Architect, Nutanix

W

10

The Nutanix Bible

11

A brief look at the history of infrastructure and what has led us to where we are today.

1.1 The Evolution of the Datacenter
The datacenter has evolved significantly over the last several decades. The following
sections will examine each era in detail.

1.1.1 The Era of the Mainframe

The mainframe ruled for many years and laid the core foundation of where we are today.
It allowed companies to leverage the following key characteristics:
• Natively converged CPU, main memory, and storage
• Engineered internal redundancy

But the mainframe also introduced the following issues:
• The high costs of procuring infrastructure
• Inherent complexity
• A lack of flexibility and highly siloed environments

1.1.2 The Move to Stand-Alone Servers

With mainframes, it was very difficult for organizations within a business to leverage these
capabilities which partly led to the entrance of pizza boxes or stand-alone servers. Key
characteristics of stand-alone servers included:
• CPU, main memory, and DAS storage
• Higher flexibility than the mainframe
• Accessed over the network

These stand-alone servers introduced more issues:
• Increased number of silos
• Low or unequal resource utilization
• The server became a single point of failure (SPOF) for both compute AND storage

1.1.3 Centralized Storage

Businesses always need to make money and data is a key piece of that puzzle. With direct-
attached storage (DAS), organizations either needed more space than was locally available,
or data high availability (HA) where a server failure wouldn’t cause data unavailability.

Centralized storage replaced both the mainframe and the stand-alone server with sharable,
larger pools of storage that also provided data protection. Key characteristics of centralized
storage included:
• Pooled storage resources led to better storage utilization
• Centralized data protection via RAID eliminated the chance that server loss caused data loss
• Storage were performed over the network

A Brief Lesson in
HistoryPART I

A Brief Lesson in History

12

The Nutanix Bible

Issues with centralized storage included:
• They were potentially more expensive, however data is more valuable than the hardware
• Increased complexity (SAN Fabric, WWPNs, RAID groups, volumes, spindle counts, etc.)
• They required another management tool / team

1.1.4 The Introduction of Virtualization

At this point in time, compute utilization was low and resource efficiency was impacting
the bottom line. Virtualization was then introduced and enabled multiple workloads and
operating systems (OSs) to run as virtual machines (VMs) on a single piece of hardware.
Virtualization enabled businesses to increase utilization of their pizza boxes, but also
increased the number of silos and the impacts of an outage. Key characteristics of
virtualization included:
• Abstracting the OS from hardware (VM)
• Very efficient compute utilization led to workload consolidation

Issues with virtualization included:
• An increase in the number of silos and management complexity
• A lack of VM high-availability, so if a compute node failed the impact was much larger
• A lack of pooled resources
• The need for another management tool / team

1.1.5 Virtualization Matures

The hypervisor became a very efficient and feature-filled solution. With the advent of tools,
including VMware vMotion, HA, and DRS, users obtained the ability to provide VM high
availability and migrate compute workloads dynamically. The only caveat was the reliance on
centralized storage, causing the two paths to merge. The only down turn was the increased
load on the storage array before and VM sprawl led to contention for storage I/O.
Key characteristics included:
• Clustering led to pooled compute resources
• The ability to dynamically migrate workloads between compute nodes (DRS / vMotion)
• The introduction of VM high availability (HA) in the case of a compute node failure
• A requirement for centralized storage

Issues included:
• Higher demand on storage due to VM sprawl
• Requirements to scale out more arrays creating more silos and more complexity
• Higher $ / GB due to requirement of an array
• The possibility of resource contention on array
• It made storage configuration much more complex due to the necessity to ensure:
 VM to datastore / LUN ratios
 Spindle count to facilitate I/O requirements

1.1.6 Solid State Disks (SSDs)

SSDs helped alleviate this I/O bottleneck by providing much higher I/O performance without
the need for tons of disk enclosures. However, given the extreme advances in performance,
the controllers and network had not yet evolved to handle the vast I/O available.
Key characteristics of SSDs included:
• Much higher I/O characteristics than traditional HDD
• Essentially eliminated seek times

13

SSD issues included:
• The bottleneck shifted from storage I/O on disk to the controller / network
• Silos still remained
• Array configuration complexity still remained

1.1.7 In Comes Cloud

The term cloud can be very ambiguous by definition. Simply put it’s the ability to consume
and leverage a service hosted somewhere provided by someone else.

With the introduction of cloud, the perspectives IT, the business and end-users have shifted.

Business groups and IT consumers require IT provide the same capabilities of cloud, its
agility and time to value. If not, they will go directly to cloud which causes another issue for
IT: data security.

Core pillars of any cloud service:
• Self-service / On-demand
 Rapid time to value (TTV) / little barrier to entry
• Service and SLA focus
 Contractual guarantees around uptime / availability / performance
• Fractional consumption model
 Pay for what you use (some services are free)

1.1.8 Cloud Classifications

Most general classifications of cloud fall into three main buckets (starting at the highest level
and moving downward):
• Software as a Service (SaaS)
 Any software / service consumed via a simple url
 Examples: Workday, Salesforce.com, Google search, etc.
• Platform as a Service (PaaS)
 Development and deployment platform
 Examples: Amazon Elastic Beanstalk / Relational Database Services (RDS), Google
 App Engine, etc.
• Infrastructure as a Service (IaaS)
 VMs/Containers/NFV as a service
 Examples: Amazon EC2/ECS, Microsoft Azure, Google Compute Engine (GCE), etc.

1.1.9 Shift in IT focus

Cloud poses an interesting dilemma for IT. They can embrace it, or they can try to provide an
alternative. They want to keep the data internal, but need to allow for the self-service, rapid
nature of cloud.

This shift forces IT to act more as a legitimate service provider to their end-users (company
employees).

A Brief Lesson in History

14

The Nutanix Bible

1.2 The Importance of Latency
The figure below characterizes the various latencies for specific types of I/O:
Item Latency Comments
L1 cache reference 0.5 ns
Branch Mispredict 5 ns
L2 cache reference 7 ns 14x L1 cache
Mutex lock/unlock 25 ns
Main memory reference 100 ns 20x L2 cache, 200x L1 cache
Compress 1KB with Zippy 3,000 ns
Sent 1KB over 1Gbps network 10,000 ns 0.01 ms
Read 4K randomly from SSD 150,000 ns 0.15 ms
Read 1MB sequentially from memory 250,000 ns 0.25 ms
Round trip within datacenter 500,000 ns 0.5 ms
Read 1MB sequentially from SSD 1,000,000 ns 1 ms, 4x memory
Disk seek 10,000,000 ns 10 ms, 20x datacenter round trip
Read 1MB sequentially from disk 20,000,000 ns 20 ms, 80x memory, 20x SSD
Send packet CA ->
Netherlands -> CA 150,000,000 ns 150 ms

(credit: Jeff Dean, https://gist.github.com/jboner/2841832)

The table above shows that the CPU can access its caches at anywhere from ~0.5-7ns (L1
vs. L2). For main memory, these accesses occur at ~100ns, whereas a local 4K SSD read is
~150,000ns or 0.15ms.
If we take a typical enterprise-class SSD (in this case the Intel S3700 - SPEC), this device is
capable of the following:

• Random I/O performance:
 Random 4K Reads: Up to 75,000 IOPS
 Random 4K Writes: Up to 36,000 IOPS
• Sequential bandwidth:
 Sustained Sequential Read: Up to 500MB/s
 Sustained Sequential Write: Up to 460MB/s
• Latency:
 Read: 50us
 Write: 65us

1.2.1 Looking at the Bandwidth

For traditional storage, there are a few main types of media for I/O:

• Fiber Channel (FC)
 4-, 8-, and 10-Gb
• Ethernet (including FCoE)
 1-, 10-Gb, (40-Gb IB), etc.

For the calculation below, we are using the 500MB/s Read and 460MB/s Write BW available
from the Intel S3700.

15

The calculation is done as follows:

numSSD = ROUNDUP((numConnections * connBW (in GB/s))/ ssdBW (R or W))

NOTE: Numbers were rounded up as a partial SSD isn’t possible. This also does not
account for the necessary CPU required to handle all of the I/O and assumes unlimited
controller CPU power.

Network BW SSDs required to saturate network BW

Controller Connectivity Available Network BW Read I/O Write I/O
Dual 4Gb FC 8Gb == 1GB 2 3
Dual 8Gb FC 16Gb == 2GB 4 5
Dual 16Gb FC 32Gb == 4GB 8 9
Dual 1Gb ETH 2Gb == 0.25GB 1 1
Dual 10Gb ETH 20Gb == 2.5GB 5 6

As the table shows, if you wanted to leverage the theoretical maximum performance an
SSD could offer, the network can become a bottleneck with anywhere from 1 to 9 SSDs
depending on the type of networking leveraged

1.2.2 The Impact to Memory Latency

Typical main memory latency is ~100ns (will vary), we can perform the following calculations:
• Local memory read latency = 100ns + [OS / hypervisor overhead]
• Network memory read latency = 100ns + NW RTT latency + [2 x OS / hypervisor

overhead]

If we assume a typical network RTT is ~0.5ms (will vary by switch vendor) which is
~500,000ns that would come down to:
• Network memory read latency = 100ns + 500,000ns + [2 x OS / hypervisor overhead]

If we theoretically assume a very fast network with a 10,000ns RTT:
• Network memory read latency = 100ns + 10,000ns + [2 x OS / hypervisor overhead]

What that means is even with a theoretically fast network, there is a 10,000% overhead
when compared to a non-network memory access. With a slow network this can be upwards
of a 500,000% latency overhead.

In order to alleviate this overhead, server side caching technologies are introduced.

1.3 Book of Web-Scale

web·scale - /web ‘ skãl/ - noun - computing architecture
a new architectural approach to infrastructure and computing.

This section will present some of the core concepts behind “Web-scale” infrastructure and
why we leverage them. Before I get started, I just wanted to clearly state the Web-scale
doesn’t mean you need to be “web-scale” (e.g. Google, Facebook, or Microsoft). These
constructs are applicable and beneficial at any scale (3-nodes or thousands of nodes).

Historical challenges included:
• Complexity, complexity, complexity
• Desire for incremental based growth

A Brief Lesson in History

16

The Nutanix Bible

• The need to be agile

There are a few key constructs used when talking about “Web-scale” infrastructure:
• Hyper-convergence
• Software defined intelligence
• Distributed autonomous systems
• Incremental and linear scale out

Other related items:
• API-based automation and rich analytics
• Self-healing

The following sections will provide a technical perspective on what they actually mean.

1.3.1 Hyper-Convergence

There are differing opinions on what hyper-convergence actually is. It also varies based on
the scope of components (e.g. virtualization, networking, etc.). However, the core concept
comes down to the following: natively combining two or more components into a single
unit. ‘Natively’ is the key word here. In order to be the most effective, the components must
be natively integrated and not just bundled together. In the case of Nutanix, we natively
converge compute + storage to form a single node used in our appliance. For others, this
might be converging storage with the network, etc.

What it really means:
• Natively integrating two or more components into a single unit which can be easily scaled

Benefits include:
• Single unit to scale
• Localized I/O
• Eliminates traditional compute / storage silos by converging them

1.3.2 Software-Defined Intelligence

Software-defined intelligence is taking the core logic from normally proprietary or specialized
hardware (e.g. ASIC / FPGA) and doing it in software on commodity hardware. For Nutanix,
we take the traditional storage logic (e.g. RAID, deduplication, compression, etc.) and put
that into software that runs in each of the Nutanix CVMs on standard x86 hardware.

What it really means:
• Pulling key logic from hardware and doing it in software on commodity hardware

Benefits include:
• Rapid release cycles
• Elimination of proprietary hardware reliance
• Utilization of commodity hardware for better economics

1.3.3 Distributed Autonomous Systems

Distributed autonomous systems involve moving away from the traditional concept of
having a single unit responsible for doing something and distributing that role among all
nodes within the cluster. You can think of this as creating a purely distributed system.
Traditionally, vendors have assumed that hardware will be reliable, which, in most cases can
be true. However, core to distributed systems is the idea that hardware will eventually fail and
handling that fault in an elegant and non-disruptive way is key.

17

These distributed systems are designed to accommodate and remediate failure, to form
something that is self-healing and autonomous. In the event of a component failure, the system
will transparently handle and remediate the failure, continuing to operate as expected. Alerting
will make the user aware, but rather than being a critical time-sensitive item, any remediation
(e.g. replace a failed node) can be done on the admin’s schedule. Another way to put it is fail
in-place (rebuild without replace) For items where a “master” is needed an election process is
utilized, in the event this master fails a new master is elected. To distribute the processing of
tasks MapReduce concepts are leveraged.

What it really means:
• Distributing roles and responsibilities to all nodes within the system
• Utilizing concepts like MapReduce to perform distributed processing of tasks
• Using an election process in the case where a “master” is needed

Benefits include:
• Eliminates any single points of failure (SPOF)
• Distributes workload to eliminate any bottlenecks

1.3.4 Incremental and linear scale out
Incremental and linear scale out relates to the ability to start with a certain set of resources
and as needed scale them out while linearly increasing the performance of the system. All
of the constructs mentioned above are critical enablers in making this a reality. For example,
traditionally you’d have 3-layers of components for running virtual workloads: servers, storage,
and network – all of which are scaled independently. As an example, when you scale out the
number of servers you’re not scaling out your storage performance. With a hyper-converged
platform like Nutanix, when you scale out with new node(s) you’re scaling out:
• The number of hypervisor / compute nodes
• The number of storage controllers
• The compute and storage performance / capacity
• The number of nodes participating in cluster wide operations

What it really means:
• The ability to incrementally scale storage / compute with linear increases to performance /

ability

Benefits include:
• The ability to start small and scale
• Uniform and consistent performance at any scale

1.3.5 Making Sense of It All
In summary:
1. Inefficient compute utilization led to the move to virtualization
2. Features including vMotion, HA, and DRS led to the requirement of centralized storage
3. VM sprawl led to the increase load and contention on storage
4. SSDs came in to alleviate the issues but changed the bottleneck to the network / controllers
5. Cache / memory accesses over the network face large overheads, minimizing their benefits
6. Array configuration complexity still remains the same
7. Server side caches were introduced to alleviate the load on the array / impact of the

network, however introduces another component to the solution
8. Locality helps alleviate the bottlenecks / overheads traditionally faced when going over the

network
9. Shifts the focus from infrastructure to ease of management and simplifying the stack
10. The birth of the Web-Scale world!

A Brief Lesson in History

18

The Nutanix Bible

prism - /’priz m/ - noun - control plane
one-click management and interface for datacenter operations.

2.1 Design Methodology and Iterations
Building a beautiful, empathetic and intuitive product are core to the Nutanix platform and
something we take very seriously. This section will cover our design methodology and how
we iterate on them. More coming here soon!

In the meantime feel free to check out this great post on our design methodology and
iterations by our Product Design Lead, Jeremy Sallee (who also desgned this) -
http://salleedesign.com/stuff/sdwip/blog/nutanix-case-study/

You can download the Nutanix Visio stencils here: http://www.visiocafe.com/nutanix.htm

2.2 Architecture
Prism is a distributed resource management platform which allows users to manage and
monitor objects and services across their Nutanix environment.

These capabilities are broken down into two key categories:
• Interfaces
 HTML5 UI, REST API, CLI, PowerShell CMDlets, etc.
• Management
 Policy definition and compliance, service design and status, analytics and monitoring

The figure highlights an image illustrating the conceptual nature of Prism as part of the
Nutanix platform:

Figure 2.2-1. High-Level Prism Architecture

Book of
PrismPART II

19

Prism is broken down into two main components:
• Prism Central (PC)

Multi-cluster manager responsible for managing multiple Acropolis Clusters to
provide a single, centralized management interface. Prism Central is an optional
software appliance (VM) which can be deployed in addition to the Acropolis Cluster
(can run on it).

 1-to-many cluster manager
• Prism Element (PE)
 Localized cluster manager responsible for local cluster management and operations.
 Every Acropolis Cluster has Prism Element built-in.
 1-to-1 cluster manager

The figure shows an image illustrating the conceptual relationship between Prism Central
and Prism Element:

Figure 2.2-2. Prism Architecture

Pro tip
For larger or distributed deployments (e.g. more than one cluster or multiple sites)
it is recommended to use Prism Central to simplify operations and provide a single
management UI for all clusters / sites.

2.2.1 Prism Services
A Prism service runs on every CVM with an elected Prism Leader which is responsible for
handling HTTP requests. Similar to other components which have a Master, if the Prism
Leader fails, a new one will be elected. When a CVM which is not the Prism Leader gets
a HTTP request it will permanently redirect the request to the current Prism Leader using
HTTP response status code 301.

Here we show a conceptual view of the Prism services and how HTTP request(s) are handled:

Figure 2.2-3. Prism Services - Request Handling

Book of Prism

20

The Nutanix Bible

Prism ports
Prism listens on ports 80 and 9440, if HTTP traffic comes in on port 80 it is
redirected to HTTPS on port 9440.

When using the cluster external IP (recommended), it will always be hosted by the current
Prism Leader. In the event of a Prism Leader failure the cluster IP will be assumed by the
newly elected Prism Leader and a gratuitous ARP (gARP) will be used to clean any stale
ARP cache entries. In this scenario any time the cluster IP is used to access Prism, no
redirection is necessary as that will already be the Prism Leader.

Pro tip
You can determine the current Prism leader by running ‘curl localhost:2019/prism/
leader’ on any CVM.

2.3 Navigation
Prism is fairly straight forward and simple to use, however we’ll cover some of the main
pages and basic usage.

Prism Central (if deployed) can be accessed using the IP address specified during configuration
or corresponding DNS entry. Prism Element can be accessed via Prism Central (by clicking on a
specific cluster) or by navigating to any Nutanix CVM or cluster IP (preferred).

Once the page has been loaded you will be greeted with the Login page where you will use
your Prism or Active Directory credentials to login.

Figure 2.3-1. Prism Login Page

Upon successful login you will be sent to the dashboard page which will provide overview
information for managed cluster(s) in Prism Central or the local cluster in Prism Element.

Prism Central and Prism Element will be covered in more detail in the following sections.

2.3.1 Prism Central
Prism Central contains the following main pages:
• Home Page

Environment wide monitoring dashboard including detailed information on service
status, capacity planning, performance, tasks, etc. To get further information on any
of them you can click on the item of interest.

• Explore Page
 Management and monitoring of services, cluster, VMs and hosts

21

• Analysis Page
 Detailed performance analysis for cluster and managed objects with event correlation
• Alerts
 Environment wide alerts
The fi gure shows a sample Prism Central dashboard where multiple clusters can be
monitored / managed:

Figure 2.3-2. Prism Central - Dashboard

From here you can monitor the overall status of your environment, and dive deeper if there
are any alerts or items of interest.

Pro tip
If everything is green, go back to doing something else :)

2.3.2 Prism Element

Prism Element contains the following main pages:
• Home Page
 Local cluster monitoring dashboard including detailed information on alerts,
 capacity, performance, health, tasks, etc.
 To get further information on any of them you can click on the item of interest.
• Health Page
 Environment, hardware and managed object health and state information.
 Includes NCC health check status as well.
• VM Page
 Full VM management, monitoring and CRUD (Acropolis)
 VM monitoring (non-Acropolis)
• Storage Page
 Container management, monitoring and CRUD
• Hardware
 Server, disk and network management, monitoring and health.
 Includes cluster expansion as well as node and disk removal.
• Data Protection
 DR, Cloud Connect and Metro Availability confi guration.
 Management of PD objects, snapshots, replication and restore.
• Analysis
 Detailed performance analysis for cluster and managed objects with event correlation
• Alerts
 Local cluster and environment alerts

Book of Prism

22

The Nutanix Bible

The home page will provide detailed information on alerts, service status, capacity,
performance, tasks, and much more. To get further information on any of them you can click
on the item of interest.

The fi gure shows a sample Prism Element dashboard where local cluster details are displayed:

Figure 2.3-3. Prism Element - Dashboard

Keyboard Shortcuts
Accessibility and ease of use is a very critical construct in Prism. To simplify things
for the end-user a set of shortcuts have been added to allow users to do everything
from their keyboard.

The following characterizes some of the key shortcuts:

Change view (page context aware):
• O - Overview View
• D - Diagram View
• T - Table View

Activities and Events:
• A - Alerts
• P - Tasks

Drop down and Menus (Navigate selection using arrow keys):
• M - Menu drop-down
• S - Settings (gear icon)
• F - Search bar
• U - User drop down
• H - Help

2.4 Usage and Troubleshooting
In the following sections we’re cover some of the typical Prism uses as well as some
common troubleshooting scenarios.

2.4.1 Nutanix Software Upgrade
Performing a Nutanix software upgrade is a very simple and non-disruptive process.

To begin, start by logging into Prism and clicking on the gear icon on the top right (settings)
or by pressing ‘S’ and selecting ‘Upgrade Software’:

23

Book of Prism

Figure 2.4-1. Prism - Settings - Upgrade Software
This will launch the ‘Upgrade Software’ dialog box and will show your current software
version and if there are any upgrade versions available. It is also possible to manually upload
a NOS binary fi le.

You can then download the upgrade version from the cloud or upload the version manually:

Figure 2.4-2. Upgrade Software - Main

It will then upload the upgrade software onto the Nutanix CVMs:

Figure 2.4-3. Upgrade Software - Upload

24

The Nutanix Bible

After the software is loaded click on ‘Upgrade’ to start the upgrade process:

Figure 2.4-4. Upgrade Software - Upgrade Validation

You’ll then be prompted with a confi rmation box:

Figure 2.4-5. Upgrade Software - Confi rm Upgrade

The upgrade will start with pre-upgrade checks then start upgrading the software in a rolling
manner:

Figure 2.4-6. Upgrade Software - Execution

Once the upgrade is complete you’ll see an updated status and have access to all of the new
features:

Figure 2.4-7. Upgrade Software - Complete

25

Note
Your Prism session will briefl y disconnect during the upgrade when the current Prism
Leader is upgraded. All VMs and services running remain unaff ected.

2.4.2 Hypervisor Upgrade

Similar to Nutanix software upgrades, hypervisor upgrades can be fully automated in a
rolling manner via Prism.

To begin follow the similar steps above to launch the ‘Upgrade Software’ dialogue box and
select ‘Hypervisor’.

You can then download the hypervisor upgrade version from the cloud or upload the version
manually:

Figure 2.4-8. Upgrade Hypervisor - Main

It will then load the upgrade software onto the Hypervisors. After the software is loaded
click on ‘Upgrade’ to start the upgrade process:

Figure 2.4-9. Upgrade Hypervisor - Upgrade Validation

Book of Prism

26

The Nutanix Bible

You’ll then be prompted with a confi rmation box:

Figure 2.4-10. Upgrade Hypervisor - Confi rm Upgrade

The system will then go through host pre-upgrade checks and upload the hypervisor
upgrade to the cluster:

Figure 2.4-11. Upgrade Hypervisor - Pre-upgrade Checks

Once the pre-upgrade checks are complete the rolling hypervisor upgrade will then proceed:

Figure 2.4-12. Upgrade Hypervisor - Execution

27

Similar to the rolling nature of the Nutanix software upgrades, each host will be upgraded in
a rolling manner with zero impact to running VMs. VMs will be live-migrated off the current
host, the host will be upgraded, and then rebooted. This process will iterate through each
host until all hosts in the cluster are upgraded.

Pro tip
You can also get cluster wide upgrade status from any Nutanix CVM by running ‘host_
upgrade --status’. The detailed per host status is logged to ~/data/logs/host_upgrade.
out on each CVM.

Once the upgrade is complete you’ll see an updated status and have access to all of the new
features:

Figure 2.4-13. Upgrade Hypervisor - Complete

2.4.3 Cluster Expansion (add node)

The ability to dynamically scale the Acropolis cluster is core to its functionality. To scale an
Acropolis cluster, rack / stack / cable the nodes and power them on. Once the nodes are
powered up they will be discoverable by the current cluster using mDNS.

The fi gure shows an example 7 node cluster with 1 node which has been discovered:

Figure 2.4-14. Add Node - Discovery

Book of Prism

28

The Nutanix Bible

Multiple nodes can be discovered and added to the cluster concurrently.

Once the nodes have been discovered you can begin the expansion by clicking ‘Expand
Cluster’ on the upper right hand corner of the ‘Hardware’ page:

Figure 2.4-15. Hardware Page - Expand Cluster
You can also being the cluster expansion process from any page by clicking on the gear icon:

Figure 2.4-16. Gear Menu - Expand Cluster
This launches the expand cluster menu where you can select the node(s) to add and specify
IP addresses for the components:

29

Figure 2.4-17. Expand Cluster - Host Selection
After the hosts have been selected you’ll be prompted to upgrade a hypervisor image which
will be used to image the nodes being added:

Figure 2.4-18. Expand Cluster - Host Confi guration

Book of Prism

30

The Nutanix Bible

After the upload is completed you can click on ‘Expand Cluster’ to being the imaging and
expansion process:

Figure 2.4-19. Expand Cluster - Execution
The job will then be submitted and the corresponding task item will appear:

Figure 2.4-20. Expand Cluster - Execution

Detailed tasks status can be viewed by expanding the task(s):

Figure 2.4-21. Expand Cluster - Execution

31

After the imaging and add node process has been completed you’ll see the updated cluster
size and resources:

Figure 2.4-22. Expand Cluster - Execution
2.4.4 Capacity Planning
To get detailed capacity planning details you can click on a specifi c cluster under the ‘cluster
runway’ section in Prism Central to get more details:

Figure 2.4-23. Prism Central - Capacity Planning

Book of Prism

32

The Nutanix Bible

This view provides detailed information on cluster runway and identifies the most
constrained resource (limiting resource). You can also get detailed information on what the
top consumers are as well as some potential options to clean up additional capacity or ideal
node types for cluster expansion.

Figure 2.4-24. Prism Central - Capacity Planning - Recommendations

The HTML5 UI is a key part to Prism to provide a simple, easy to use management
interface. However, another core ability are the APIs which are available for automation. All
functionality exposed through the Prism UI is also exposed through a full set of REST APIs
to allow for the ability to programmatically interface with the Nutanix platform. This allow
customers and partners to enable automation, 3rd-party tools, or even create their own UI.
The following section covers these interfaces and provides some example usage.

2.5 APIs and Interfaces
Core to any dynamic or “software-defined” environment, Nutanix provides a vast array of
interfaces allowing for simple programability and interfacing. Here are the main interfaces:
• REST API
• CLI - ACLI & NCLI
• Scripting interfaces

Core to this is the REST API which exposes every capability and data point of the Prism UI
and allows for orchestration or automation tools to easily drive Nutanix action. This enables
tools like Saltstack, Puppet, vRealize Operations, System Center Orchestrator, Ansible, etc. to
easily create custom workflows for Nutanix. Also, this means that any third-party developer
could create their own custom UI and pull in Nutanix data via REST.

The following figure shows a small snippet of the Nutanix REST API explorer which allows
developers to interact with the API and see expected data formats:

33

Figure 2.5-1. Prism REST API Explorer

Operations can be expanded to display details and examples of the REST call:

Figure 2.5-2. Prism REST API Sample Call

API Authentication Scheme(s)
As of 4.5.x basic authentication over HTTPS is leveraged for client and HTTP call
authentication.

2.5.1 ACLI

The Acropolis CLI (ACLI) is the CLI for managing the Acropolis portion of the Nutanix
product. These capabilities were enabled in releases after 4.1.2.

NOTE: All of these actions can be performed via the HTML5 GUI and REST API.
I just use these commands as part of my scripting to automate tasks.

Enter ACLI shell
Description: Enter ACLI shell (run from any CVM)

 Acli

Book of Prism

34

The Nutanix Bible

OR
Description: Execute ACLI command via Linux shell

 ACLI <Command>

Output ACLI response in json format
Description: Lists Acropolis nodes in the cluster.

 Acli –o json

List hosts
Description: Lists Acropolis nodes in the cluster.

 host.list

Create network
Description: Create network based on VLAN

 net.create <TYPE>.<ID>[.<VSWITCH>] ip_config=<A.B.C.D>/<NN>

 Example: net.create vlan.133 ip_config=10.1.1.1/24

List network(s)
Description: List networks

 net.list

Create DHCP scope
Description: Create dhcp scope

 net.add_dhcp_pool <NET NAME> start=<START IP A.B.C.D> end=<END IP W.X.Y.Z>

Note: .254 is reserved and used by the Acropolis DHCP server if an address for the
Acropolis DHCP server wasn’t set during network creation

Example: net.add_dhcp_pool vlan.100 start=10.1.1.100 end=10.1.1.200

Get an existing networks details
Description: Get a network’s properties

 net.get <NET NAME>

 Example: net.get vlan.133

Get an existing networks details
Description: Get a network’s VMs and details including VM name / UUID, MAC address and
IP

 net.list_vms <NET NAME>

 Example: net.list_vms vlan.133

Configure DHCP DNS servers for network
Description: Set DHCP DNS

35

 net.update_dhcp_dns <NET NAME> servers=<COMMA SEPARATED DNS IPs> domains=
 <COMMA SEPARATED DOMAINS>

 Example: net.set_dhcp_dns vlan.100 servers=10.1.1.1,10.1.1.2
 domains=splab.com

Create Virtual Machine
Description: Create VM

 vm.create <COMMA SEPARATED VM NAMES> memory=<NUM MEM MB> num_vcpus=<NUM
 VCPU>num_cores_per_vcpu=<NUM CORES> ha_priority=<PRIORITY INT>

 Example: vm.create testVM memory=2G num_vcpus=2

Bulk Create Virtual Machine
Description: Create bulk VM

 vm.create <CLONE PREFIX>[<STARTING INT>..<END INT>]memory=<NUM MEM MB> num_
 vcpus=<NUM VCPU> num_cores_per_vcpu=<NUM CORES> ha_priority=<PRIORITY INT>

 Example: vm.create testVM[000..999] memory=2G num_vcpus=2

Clone VM from existing
Description: Create clone of existing VM

 vm.clone <CLONE NAME(S)> clone_from_vm=<SOURCE VM NAME>

 Example: vm.clone testClone clone_from_vm=MYBASEVM

Bulk Clone VM from existing
Description: Create bulk clones of existing VM

 vm.clone <CLONE PREFIX>[<STARTING INT>..<END INT>] clone_from_vm=<SOURCE VM NAME>

 Example: vm.clone testClone[001..999] clone_from_vm=MYBASEVM

Create disk and add to VM
Description: Create disk for OS

 vm.disk_create <VM NAME> create_size=<Size and qualifier, e.g. 500G> container=<CONTAINER NAME>

 class=”codetext”Example: vm.disk_create testVM create_size=500G container=default

Add NIC to VM
Description: Create and add NIC

 vm.nic_create <VM NAME> network=<NETWORK NAME> model=<MODEL>

 Example: vm.nic_create testVM network=vlan.100

Set VM’s boot device to disk
Description: Set a VM boot device

Set to boot form specific disk id

 vm.update_boot_device <VM NAME> disk_addr=<DISK BUS>

Book of Prism

36

The Nutanix Bible

 Example: vm.update_boot_device testVM disk_addr=scsi.0

Set VM’s boot device to CDrom
Set to boot from CDrom

 vm.update_boot_device <VM NAME> disk_addr=<CDROM BUS>

 Example: vm.update_boot_device testVM disk_addr=ide.0

Mount ISO to CDrom
Description: Mount ISO to VM cdrom

Steps:
1. Upload ISOs to container
2. Enable whitelist for client IPs
3. Upload ISOs to share

Create CDrom with ISO

 vm.disk_create <VM NAME> clone_nfs_file=<PATH TO ISO> cdrom=true

 Example: vm.disk_create testVM clone_nfs_file=/default/ISOs/myfile.iso cdrom=true

If a CDrom is already created just mount it

 vm.disk_update <VM NAME> <CDROM BUS> clone_nfs_file<PATH TO ISO>

 Example: vm.disk_update atestVM1 ide.0 clone_nfs_file=/default/ISOs/myfile.iso

Detach ISO from CDrom
Description: Remove ISO from CDrom

 vm.disk_update <VM NAME> <CDROM BUS> empty=true

Power on VM(s)
Description: Power on VM(s)

 vm.on <VM NAME(S)>

 Example: vm.on testVM

Power on all VMs

 Example: vm.on *

Power on range of VMs

 Example: vm.on testVM[01..99]

2.5.2 NCLI

NOTE: All of these actions can be performed via the HTML5 GUI and REST API.
I just use these commands as part of my scripting to automate tasks.

Add subnet to NFS whitelist
Description: Adds a particular subnet to the NFS whitelist

37

 ncli cluster add-to-nfs-whitelist ip-subnet-masks=10.2.0.0/255.255.0.0

Display Nutanix Version
Description: Displays the current version of the Nutanix software

 ncli cluster version

Display hidden NCLI options
Description: Displays the hidden ncli commands/options

 ncli helpsys listall hidden=true [detailed=false|true]

List Storage Pools
Description: Displays the existing storage pools

 ncli sp ls

List containers
Description: Displays the existing containers

 ncli ctr ls

Create container
Description: Creates a new container

 ncli ctr create name=<NAME> sp-name=<SP NAME>

List VMs
Description: Displays the existing VMs

 ncli vm ls

List public keys
Description: Displays the existing public keys

 ncli cluster list-public-keys

Add public key
Description: Adds a public key for cluster access

SCP public key to CVM

Add public key to cluster

 ncli cluster add-public-key name=myPK file-path=~/mykey.pub

Remove public key
Description: Removes a public key for cluster access

 ncli cluster remove-public-keys name=myPK

Create protection domain
Description: Creates a protection domain

 ncli pd create name=<NAME>

Book of Prism

38

The Nutanix Bible

Create remote site
Description: Create a remote site for replication

 ncli remote-site create name=<NAME> address-list=<Remote Cluster IP>

Create protection domain for all VMs in container
Description: Protect all VMs in the specified container

 ncli pd protect name=<PD NAME> ctr-id=<Container ID> cg-name=<NAME>

Create protection domain with specified VMs
Description: Protect the VMs specified

 ncli pd protect name=<PD NAME> vm-names=<VM Name(s)> cg-name=<NAME>

Create protection domain for DSF files (aka vDisk)
Description: Protect the DSF Files specified

 ncli pd protect name=<PD NAME> files=<File Name(s)> cg-name=<NAME>

Create snapshot of protection domain
Description: Create a one-time snapshot of the protection domain

 ncli pd add-one-time-snapshot name=<PD NAME> retention-time=<seconds>

Create snapshot and replication schedule to remote site
Description: Create a recurring snapshot schedule and replication to n remote sites

 ncli pd set-schedule name=<PD NAME> interval=<seconds> retention-
 policy=<POLICY> remote-sites=<REMOTE SITE NAME>

List replication status
Description: Monitor replication status

 ncli pd list-replication-status

Migrate protection domain to remote site
Description: Fail-over a protection domain to a remote site

 ncli pd migrate name=<PD NAME> remote-site=<REMOTE SITE NAME>

Activate protection domain
Description: Activate a protection domain at a remote site

 ncli pd activate name=<PD NAME>

Enable DSF Shadow Clones
Description: Enables the DSF Shadow Clone feature

 ncli cluster edit-params enable-shadow-clones=true

Enable Dedup for vDisk
Description: Enables fingerprinting and/or on disk dedup for a specific vDisk

39

 ncli vdisk edit name=<VDISK NAME> fingerprint-on-write=<true/false> on-disk-
 dedup=<true/false>

Check cluster resiliency status

 # Node status
 ncli cluster get-domain-fault-tolerance-status type=node

 # Block status
 ncli cluster get-domain-fault-tolerance-status type=rackable_unit

2.5.3 PowerShell CMDlets

The below will cover the Nutanix PowerShell CMDlets, how to use them and some general
background on Windows PowerShell.

Basics

Windows PowerShell is a powerful shell (hence the name ;P) and scripting language built
on the .NET framework. It is a very simple to use language and is built to be intuitive and
interactive. Within PowerShell there are a few key constructs/Items:

CMDlets

CMDlets are commands or .NET classes which perform a particular operation. They are
usually conformed to the Getter/Setter methodology and typically use a <Verb>-<Noun>
based structure. For example: Get-Process, Set-Partition, etc.

Piping or Pipelining

Piping is an important construct in PowerShell (similar to its use in Linux) and can greatly
simplify things when used correctly. With piping you’re essentially taking the output of
one section of the pipeline and using that as input to the next section of the pipeline. The
pipeline can be as long as required (assuming there remains output which is being fed to
the next section of the pipe). A very simple example could be getting the current processes,
finding those that match a particular trait or filter and then sorting them:

 Get-Service | where {$_.Status -eq “Running”} | Sort-Object Name

Piping can also be used in place of for-each, for example:

 # For each item in my array
 $myArray | %{

 # Do something
 }

Key Object Types

Below are a few of the key object types in PowerShell. You can easily get the object type by
using the .getType() method, for example: $someVariable.getType() will return the objects type.

Book of Prism

40

The Nutanix Bible

Variable

 $myVariable = “foo”

Note: You can also set a variable to the output of a series or pipeline of commands:

$myVar2 = (Get-Process | where {$_.Status -eq “Running})

In this example the commands inside the parentheses will be evaluated fi rst then variable
will be the outcome of that.

Array

 $myArray = @(“Value”,”Value”)

Note: You can also have an array of arrays, hash tables or custom objects

Hash Table

 $myHash = @{“Key” = “Value”;”Key” = “Value”}

Useful commands

Get the help content for a particular CMDlet (similar to a man page in Linux)

 Get-Help <CMDlet Name>

 Example: Get-Help Get-Process

List properties and methods of a command or object

 <Some expression or object> | Get-Member

 Example: $someObject | Get-Member

Core Nutanix CMDlets and Usage

Download Nutanix CMDlets Installer The Nutanix CMDlets can be downloaded directly from
the Prism UI (post 4.0.1) and can be found on the drop down in the upper right hand corner:

Figure 2.5-3. Prism CMDlets Installer Link

41

Load Nutanix Snappin

Check if snappin is loaded and if not, load

 if ((Get-PSSnapin -Name NutanixCmdletsPSSnapin -ErrorAction
 SilentlyContinue) -eq $null)
 {
 Add-PsSnapin NutanixCmdletsPSSnapin
 }

List Nutanix CMDlets

 Get-Command | Where-Object{$_.PSSnapin.Name -eq “NutanixCmdletsPSSnapin”}

Connect to a Acropolis Cluster

 Connect-NutanixCluster -Server $server -UserName “myuser” -Password
 “myuser” -AcceptInvalidSSLCerts

Or secure way prompting user for password

 Connect-NutanixCluster -Server $server -UserName “myuser” -Password (Read-
 Host “Password: “) -AcceptInvalidSSLCerts

Get Nutanix VMs matching a certain search string

Set to variable

 $searchString = “myVM”
 $vms = Get-NTNXVM | where {$_.vmName -match $searchString}

Interactive

 Get-NTNXVM | where {$_.vmName -match “myString”}

Interactive and formatted

 Get-NTNXVM | where {$_.vmName -match “myString”} | ft

Get Nutanix vDisks

Set to variable

 $vdisks = Get-NTNXVDisk

Interactive

 Get-NTNXVDisk

Interactive and formatted

 Get-NTNXVDisk | ft

Get Nutanix Containers

Set to variable

 $containers = Get-NTNXContainer

Book of Prism

42

The Nutanix Bible

Interactive

 Get-NTNXContainer

Interactive and formatted

 Get-NTNXContainer | ft

Get Nutanix Protection Domains

Set to variable

 $pds = Get-NTNXProtectionDomain

Interactive

 Get-NTNXProtectionDomain

Interactive and formatted

 Get-NTNXProtectionDomain | ft

Get Nutanix Consistency Groups

Set to variable

 $cgs = Get-NTNXProtectionDomainConsistencyGroup

Interactive

 Get-NTNXProtectionDomainConsistencyGroup

Interactive and formatted

 Get-NTNXProtectionDomainConsistencyGroup | ft

Resources and Scripts:
• Nutanix Github - https://github.com/nutanix/Automation
• Manually Fingerprint vDisks - http://bit.ly/1syOqch
• vDisk Report - http://bit.ly/1r34MIT
• Protection Domain Report - http://bit.ly/1r34MIT
• Ordered PD Restore - http://bit.ly/1pyolrb
• You can find more scripts on the Nutanix Github located at https://github.com/nutanix

2.6 Integrations
2.6.1 OpenStack

OpenStack is an open source platform for managing and building clouds. It is primarily
broken into the front-end (dashboard and API) and infrastructure services (compute,
storage, etc.).

The OpenStack and Nutanix solution is composed of a few main components:

• OpenStack Controller (OSC)
 An existing, or newly provisioned VM or host hosting the OpenStack UI, API and
 services. Handles all OpenStack API calls. In an Acropolis OVM deployment this can
 be co-located with the Acropolis OpenStack Drivers.

43

• Acropolis OpenStack Driver
 Responsible for taking OpenStack RPCs from the OpenStack Controller and
 translates them into native Acropolis API calls. This can be deployed on the
 OpenStack Controller, the OVM (pre-installed), or on a new VM.
• Acropolis OpenStack Services VM (OVM)
 VM with Acropolis drivers that is responsible for taking OpenStack RPCs from the
 OpenStack Controller and translates them into native Acropolis API calls.

The OpenStack Controller can be an existing VM / host, or deployed as part of the OpenStack
on Nutanix solution. The Acropolis OVM is a helper VM which is deployed as part of the Nutanix
OpenStack solution.

The client communicates with the OpenStack Controller using their expected methods (Web UI
/ HTTP, SDK, CLI or API) and the OpenStack controller communicates with the Acropolis OVM
which translates the requests into native Acropolis REST API calls using the OpenStack Driver.

The figure shows a high-level overview of the communication:

Figure 2.6-1. OpenStack + Acropolis OpenStack Driver

Supported OpenStack Controllers

The current solution (as of 4.5.1) requires an OpenStack Controller on version Kilo or later.

The table shows a high-level conceptual role mapping:

Book of Prism

Item Role
OpenStack
Controller

Acropolis
OVM

Acropolis
Cluster

Prism

Tenant Dashboard User interface and API X

Admin Dashboard Infra Monitoring and ops X X

Orchestration
Object CRUD and lifecycle
management

X

Quotas
Resource controls
and limits

X

Users, Groups
and Roles

Role based access control (RBAC) X

SSO Single-sign on X

Platform
Integration

OpenStack to Nutanix integration X

Infrastructure
Services

Target infrastructure (compute,
storage, network)

X

44

The Nutanix Bible

2.6.1.1 OpenStack Components

OpenStack is composed of a set of components which are responsible for serving various
infrastructure functions. Some of these functions will be hosted by the OpenStack Controller
and some will be hosted by the Acropolis OVM.

The table shows the core OpenStack components and role mapping:

The figure shows a more detailed view of the OpenStack components and communication:

Figure 2.6-2. OpenStack + Nutanix API Communication

In the following sections we will go through some of the main OpenStack components and
how they are integrated into the Nutanix platform.

Nova

Nova is the compute engine and scheduler for the OpenStack platform. In the Nutanix
OpenStack solution each Acropolis OVM acts as a compute host and every Acropolis
Cluster will act as a single hypervisor host eligible for scheduling OpenStack instances. The
Acropolis OVM runs the Nova-compute service.

Component Role OpenStack Controller Acropolis OVM

Keystone Identity service X

Horizon Dashboard and UI X

Nova Compute X

Swift Object storage X X

Cinder Block storage X

Glance Image service X X

Neutron Networking X

Heat Orchestration X

Others All other components X

45

You can view the Nova services using the OpenStack portal under ‘Admin’->’System’-
>’System Information’->’Compute Services’.

The fi gure shows the Nova services, host and state:

Figure 2.6-3. OpenStack Nova Services
The Nova scheduler decides which compute host (i.e. Acropolis OVM) to place the instances
based upon the selected availability zone. These requests will be sent to the selected
Acropolis OVM which will forward the request to the target host’s (i.e. Acropolis cluster)
Acropolis scheduler. The Acropolis scheduler will then determine optimal node placement
within the cluster. Individual nodes within a cluster are not exposed to OpenStack.

You can view the compute and hypevisor hosts using the OpenStack portal under ‘Admin’-
>’System’->’Hypervisors’.

The fi gure shows the Acropolis OVM as the compute host:

Figure 2.6-4. OpenStack Compute Host

Book of Prism

46

The Nutanix Bible

The fi gure shows the Acropolis cluster as the hypervisor host:

Figure 2.6-5. OpenStack Hypervisor Host

As you can see from the previous image the full cluster resources are seen in a single
hypervisor host.

Swift

Swift in an object store used to store and retrieve fi les. This is currently only leveraged for
backup / restore of snapshots and images.

Cinder

Cinder is OpenStack’s volume component for exposing iSCSI targets. Cinder leverages
the Acropolis Volumes API in the Nutanix solution. These volumes are attached to the
instance(s) directly as block devies (as compared to in-guest).

You can view the Cinder services using the OpenStack portal under ‘Admin’->’System’-
>’System Information’->’Block Storage Services’.

The fi gure shows the Cinder services, host and state:

Figure 2.6-6. OpenStack Cinder Services

Glance / Image Repo

Glance is the image store for OpenStack and shows the available images for provisioning.
Images can include ISOs, disks, and snapshots.

The Image Repo is the repository storing available images published by Glance. These can
be located within the Nutanix environment or by an external source. When the images are

47

hosted on the Nutanix platform, they will be published to the OpenStack controller via
Glance on the OVM. In cases where the Image Repo exists only on an external source, Glance
will be hosted by the OpenStack Controller and the Image Cache will be leveraged on the
Acropolis Cluster(s).

Glance is enabled on a per-cluster basis and will always exist with the Image Repo. When
Glance is enabled on multiple clusters the Image Repo will span those clusters and images
created via the OpenStack Portal will be propogated to all clusters running Glance. Those
clusters not hosting Glance will cache the images locally using the Image Cache.

Pro tip
For larger deployments Glance should run on at least two Acropolis Clusters per
site. This will provide Image Repo HA in the case of a cluster outage and ensure the
images will always be available when not in the Image Cache.

When external sources host the Image Repo / Glance, Nova will be responsible for handling
data movement from the external source to the target Acropolis Cluster(s). In this case the
Image Cache will be leveraged on the target Acropolis Cluster(s) to cache the image locally
for any subsequent provisioning requsts for the image.

Neutron

Neutron is the networking component of OpenStack and responsible for network
confi guration. The Acropolis OVM allows network CRUD operations to be performed by the
OpenStack portal and will then make the required changes in Acropolis.

You can view the Neutron services using the OpenStack portal under ‘Admin’->’System’-
>’System Information’->’Network Agents’.

The fi gure shows the Neutron services, host and state:

+ Currently only Local and VLAN network types are supported.
Figure 2.6-7. OpenStack Neutron Services

Neutron will assign IP addresses to instances when they are booted. In this case Acropolis
will receive a desired IP address for the VM which will be allocated. When the VM performs a
DHCP request the Acropolis Master will respond to the DHCP request on a private VXLAN as
usual with AHV.

Book of Prism

48

The Nutanix Bible

Supported Network Types
Currently only Local and VLAN network types are supported.

The Keystone and Horizon components run in an OpenStack Controller which interfaces
with the Acropolis OVM. The OVM(s) have an OpenStack Driver which is responsible for
translating the OpenStack API calls into native Acropolis API calls.

2.6.1.2 Design and Deployment

For large scale cloud deployments it is important to leverage a delivery topology that will be
distributed and meet the requirements of the end-users while providing flexibility and locality.

OpenStack leverages the following high-level constructs which are defined below:

• Region
 A geographic landmass or area where multiple Availability Zones (sites) are located.
 These can include regions like US-Northwest or US-West.

• Availability Zone (AZ)
 A specific site or datacenter location where cloud services are hosted. These can
 include sites like US-Northwest-1 or US-West-1.

• Host Aggregate
 A group of compute hosts, can be a row, aisle or equivalent to the site / AZ.

• Compute Host
 An Acropolis OVM which is running the nova-compute service.

• Hypervisor Host
 A Acropolis Cluster (seen as a single host).

The figure shows the high-level relationship of the constructs:

Figure 2.6-8. OpenStack - Deployment Layout

49

The fi gure shows an example application of the constructs:

Figure 2.6-9. OpenStack - Deployment Layout - Example

You can view and manage hosts, host aggregates and availability zones using the OpenStack
portal under ‘Admin’->’System’->’Host Aggregates’.

The fi gure shows the host aggregates, availability zones and hosts:

Figure 2.6-10. OpenStack Host Aggregates and Availability Zones

2.6.1.3 Services Design and Scaling

For larger deployments it is recommended to have multiple Acropolis OVMs connected
to the OpenStack Controller abstracted by a load balancer. This allows for HA and of the
OVMs as well as distribution of transactions. The OVM(s) don’t contain any state information
allowing them to be scaled.

Book of Prism

50

The Nutanix Bible

The figure shows an example of scaling OVMs for a single site:

Figure 2.6-11. OpenStack - OVM Load Balancing

One method to achieve this for the OVM(s) is using Keepalived and HAproxy.

For environments spanning multiple sites the OpenStack Controller will talk to multiple
Acropolis OVMs across sites.

The figure shows an example of the deployment across multiple sites:

Figure 2.69-12. OpenStack - Multi-Site

51

2.6.1.4 Deployment

The OVM can be deployed as a standalone RPM on a CentOS / Redhat distro or as a full VM.
The Acropolis OVM can be deployed on any platform (Nutanix or non-Nutanix) as long as it
has network connectivity to the OpenStack Controller and Nutanix Cluster(s).

The VM(s) for the Acropolis OVM can be deployed on a Nutanix AHV cluster using the
following steps. If the OVM is already deployed you can skip past the VM creation steps. You
can use the full OVM image or use an existing CentOS / Redhat VM image.

First we will import the provided Acropolis OVM disk image to Acropolis cluster. This can be
done by copying the disk image over using SCP or by specifying a URL to copy the file from.
We will cover importing this using the Images API. Note: It is possible to deploy this VM
anywhere, not necessarily on a Acropolis cluster.

To import the disk image using Images API, run the following command:

 image.create <IMAGE_NAME> source_url=<SOURCE_URL> container=<CONTAINER_NAME>

Next create the Acropolis VM for the OVM by running the following ACLI commands on any CVM:

 vm.create <VM_NAME> num_vcpus=2 memory=16G
 vm.disk_create <VM_NAME> clone_from_image=<IMAGE_NAME>
 vm.nic_create <VM_NAME> network=<NETWORK_NAME>
 vm.on <VM_NAME>

Once the VM(s) have been created and powered on, SSH to the OVM(s) using the provided
credentials.

OVMCTL Help
Help txt can be displayed by running the following command on the OVM:

ovmctl --help

The OVM supports two deployment modes:

• OVM-allinone
 OVM includes all Acropolis drivers and OpenStack controller
• OVM-services
 OVM includes all Acropolis drivers and communicates with external/remote
 OpenStack controller

Both deployment modes will be covered in the following sections. You can use in any mode
and also switch between modes.

OVM-allinone

The following steps cover the OVM-allinone deployment. Start by SSHing to the OVM(s) to
run the following commands.

 # Register OpenStack Driver service
 ovmctl --add ovm --name <OVM_NAME> --ip <OVM_IP>

 # Register OpenStack Controller
 ovmctl --add controller --name <OVM_NAME> --ip <OVM_IP>

Book of Prism

52

The Nutanix Bible

 # Register Acropolis Cluster(s) (run for each cluster to add)
 ovmctl --add cluster --name <CLUSTER_NAME> --ip <CLUSTER_IP> --username
 <PRISM_USER> --password <PRISM_PASSWORD>

 The following values are used as defaults:
 Number of VCPUs per core = 4
 Container name = default
 Image cache = disabled, Image cache URL = None

Next we’ll verify the configuration using the following command:

 ovmctl --show

At this point everything should be up and running, enjoy.

OVM-services

The following steps cover the OVM-services deployment. Start by SSHing to the OVM(s) to
run the following commands.

 # Register OpenStack Driver service
 ovmctl --add ovm --name <OVM_NAME> --ip <OVM_IP>

 # Register OpenStack Controller
 ovmctl --add controller --name <OS_CONTROLLER_NAME> --ip <OS_CONTROLLER_IP>
 --username <OS_CONTROLLER_USERNAME> --password <OS_CONTROLLER_PASSWORD>

 The following values are used as defaults:
 Authentication: auth_strategy = keystone, auth_region = RegionOne
 auth_tenant = services, auth_password = admin
 Database: db_{nova,cinder,glance,neutron} = mysql, db_
 {nova,cinder,glance,neutron}_password = admin
 RPC: rpc_backend = rabbit, rpc_username = guest, rpc_password = guest

 # Register Acropolis Cluster(s) (run for each cluster to add)
 ovmctl --add cluster --name <CLUSTER_NAME> --ip <CLUSTER_IP> --username
 <PRISM_USER> --password <PRISM_PASSWORD>

 The following values are used as defaults:
 Number of VCPUs per core = 4
 Container name = default
 Image cache = disabled, Image cache URL = None

If non-default passwords were used for the OpenStack controller deployment, we’ll need to
update those:

 # Update controller passwords (if non-default are used)
 ovmctl --update controller --name <OS_CONTROLLER_NAME> --auth_nova_password
 <> --auth_glance_password <> --auth_neutron_password <> --auth_cinder_
 password <> --db_nova_password <> --db_glance_password <> --db_neutron_
 password <> --db_cinder_password <>

53

Book of Prism

Next we’ll verify the configuration using the following command:

 ovmctl --show

Now that the OVM has been configured, we’ll configure the OpenStack Controller to know
about the Glance and Neutron endpoints.

Log in to the OpenStack controller and enter the keystonerc_admin source:

 # enter keystonerc_admin source ./keystonerc_admin

First we will delete the existing endpoint for Glance that is pointing to the controller:

 # Find old Glance endpoint id (port 9292) keystone endpoint-list # Remove
 old keystone endpoint for Glance
 keystone endpoint-delete <GLANCE_ENDPOINT_ID>

Next we will create the new Glance endpoint that will point to the OVM:

 # Find Glance service id
 keystone service-list | grep glance
 # Will look similar to the following:
 | 9e539e8dee264dd9a086677427434982 | glance | image |

 # Add Keystone endpoint for Glance
 keystone endpoint-create \
 --service-id <GLANCE_SERVICE_ID> \
 --publicurl http://<OVM_IP>:9292 \
 --internalurl http://<OVM_IP>:9292 \
 --region <REGION_NAME> \
 --adminurl http://<OVM_IP>:9292

Next we will delete the existing endpoint for Neutron that is pointing to the controller:

 # Find old Neutron endpoint id (port 9696)
 keystone endpoint-list # Remove old keystone endpoint for Neutron
 keystone endpoint-delete <NEUTRON_ENDPOINT_ID>

Next we will create the new Neutron endpoint that will point to the OVM:

 # Find Neutron service id
 keystone service-list | grep neutron
 # Will look similar to the following:
 | f4c4266142c742a78b330f8bafe5e49e | neutron | network |

 # Add Keystone endpoint for Neutron
 keystone endpoint-create \
 --service-id <NEUTRON_SERVICE_ID> \
 --publicurl http://<OVM_IP>:9696 \
 --internalurl http://<OVM_IP>:9696 \
 --region <REGION_NAME> \
 --adminurl http://<OVM_IP>:9696

After the endpoints have been created we will update the Nova and Cinder configuration
files with new Acropolis OVM IP of Glance host.

54

The Nutanix Bible

First we will edit Nova.conf which is located at /etc/nova/nova.conf and edit the following lines:

 [glance]
 ...
 # Default glance hostname or IP address (string value)
 host=<OVM_IP>

 # Default glance port (integer value)
 port=9292
 ...
 # A list of the glance api servers available to nova. Prefix
 # with https:// for ssl-based glance api servers.
 # ([hostname|ip]:port) (list value)
 api_servers=<OVM_IP>:9292

Now we will disable nova-compute on the OpenStack controller (if not already):

 systemctl disable openstack-nova-compute.service
 systemctl stop openstack-nova-compute.service
 service openstack-nova-compute stop

Next we will edit Cinder.conf which is located at /etc/cinder/cinder.conf and edit the
following items:

 # Default glance host name or IP (string value)
 glance_host=<OVM_IP>
 # Default glance port (integer value)
 glance_port=9292
 # A list of the glance API servers available to cinder
 # ([hostname|ip]:port) (list value)
 glance_api_servers=$glance_host:$glance_port

We will also comment out lvm enabled backends as those will not be leveraged:

 # Comment out the following lines in cinder.conf
 #enabled_backends=lvm
 #[lvm]
 #iscsi_helper=lioadm
 #volume_group=cinder-volumes
 #iscsi_ip_address=
 #volume_driver=cinder.volume.drivers.lvm.LVMVolumeDriver
 #volumes_dir=/var/lib/cinder/volumes
 #iscsi_protocol=iscsi
 #volume_backend_name=lvm

Now we will disable cinder volume on the OpenStack controller (if not already):

 systemctl disable openstack-cinder-volume.service
 systemctl stop openstack-cinder-volume.service
 service openstack-cinder-volume stop

Now we will disable glance-image on the OpenStack controller (if not already):

 systemctl disable openstack-glance-api.service
 systemctl disable openstack-glance-registry.service

55

Book of Prism

 systemctl stop openstack-glance-api.service
 systemctl stop openstack-glance-registry.service
 service openstack-glance-api stop
 service openstack-glance-registry stop

After the files have been edited we will restart the Nova and Cinder services to take the new
configuration settings. The services can be restarted with the following commands below or
by running the scripts which are available for download.

 # Restart Nova services
 service openstack-nova-api restart
 service openstack-nova-consoleauth restart
 service openstack-nova-scheduler restart
 service openstack-nova-conductor restart
 service openstack-nova-cert restart
 service openstack-nova-novncproxy restart

 # OR you can also use the script which can be downloaded as part of the
 helper tools:
 ~/openstack/commands/nova-restart

 # Restart Cinder
 service openstack-cinder-api restart
 service openstack-cinder-scheduler restart
 service openstack-cinder-backup restart

 # OR you can also use the script which can be downloaded as part of the
 helper tools:
 ~/openstack/commands/cinder-restart

2.6.1.5 Troubleshooting & Advanced Administration
Key log locations

Logs marked with * are on the Acropolis OVM only.

Component Key Log Location(s)

Keystone /var/log/keystone/keystone.log

Horizon /var/log/horizon/horizon.log

Nova
/var/log/nova/nova-api.log
/var/log/nova/nova-scheduler.log
/var/log/nova/nove-compute.log*

Swift /var/log/swift/swift.log

Cinder
/var/log/cinder/api.log
/var/log/cinder/scheduler.log
/var/log/cinder/volume.log

Glance /var/log/glance/api.log
/var/log/glance/registry.log

Neutron

/var/log/neutron/server.log
/var/log/neutron/dhcp-agent.log*
/var/log/neutron/l3-agent.log*
/var/log/neutron/metadata-agent.log*
/var/log/neutron/openvswitch-agent.log*

56

The Nutanix Bible

Pro tip
Check NTP if a service is seen as state ‘down’ in OpenStack Manager (Admin UI or
CLI) eventhough the service is running in the OVM. Many services have a requirement
for time to be in sync between the OpenStack Controller and Acropolis OVM.

Command Reference

Load Keystone source (perform before running other commands)

 source keystonerc_admin

List Keystone services

 keystone service-list

List Keystone endpoints

 keystone endpoint-list

Create Keystone endpoint

 keystone endpoint-create \
 --service-id=<SERVICE_ID> \
 --publicurl=http://<IP:PORT> \
 --internalurl=http://<IP:PORT> \
 --region=<REGION_NAME> \
 --adminurl=http://<IP:PORT>

List Nova instances

 nova list

Show instance details

 nova show <INSTANCE_NAME>

List Nova hypersivor hosts

 nova hypervisor-list

Show hyprevisor host details

 nova hypervisor-show <HOST_ID>

List Glance images

 glance image-list

Show Glance image details

 glance image-show <IMAGE_ID>

57

a·crop·o·lis - / ‘ kräp lis/ - noun - data plane
storage, compute and virtualization platform.

3.1 Architecture
Acropolis is a distributed multi-resource manager, orchestration platform and data plane.

It is broken down into three main components:
• Distributed Storage Fabric (DSF)
 This is at the core and birth of the Nutanix platform and expands upon the Nutanix
 Distributed Filesystem (NDFS). NDFS has now evolved from a distributed system
 pooling storage resources into a much larger and capable storage platform.
• App Mobility Fabric (AMF)
 Hypervisors abstracted the OS from hardware, and the AMF abstracts workloads
 (VMs, Storage, Containers, etc.) from the hypervisor. This will provide the ability to
 dynamically move the workloads between hypervisors, clouds, as well as provide the
 ability for Nutanix nodes to change hypervisors.
• Hypervisor
 A multi-purpose hypervisor based upon the CentOS KVM hypervisor.

Building upon the distributed nature of everything Nutanix does, we’re expanding this
into the virtualization and resource management space. Acropolis is a back-end service
that allows for workload and resource management, provisioning, and operations. Its goal
is to abstract the facilitating resource (e.g., hypervisor, on-premise, cloud, etc.) from the
workloads running, while providing a single “platform” to operate.

This gives workloads the ability to seamlessly move between hypervisors, cloud providers,
and platforms.

The figure highlights an image illustrating the conceptual nature of Acropolis at various layers:

Figure 3.1-1. High-level Acropolis Architecture

Book of
AcropolisPART III

Book of Acropolis

58

The Nutanix Bible

Supported Hypervisors for VM Management
Currently, the only fully supported hypervisor for VM management is AHV, however
this may expand in the future. The Volumes API and read-only operations are still
supported on all.

3.1.1 Converged Platform

The Nutanix solution is a converged storage +
compute solution which leverages local components
and creates a distributed platform for virtualization,
also known as a virtual computing platform. The
solution is a bundled hardware + software appliance
which houses 2 (6000/7000 series) or 4 nodes
(1000/2000/3000/3050 series) in a 2U footprint.

Each node runs an industry-standard hypervisor (ESXi,
KVM, Hyper-V currently) and the Nutanix Controller
VM (CVM). The Nutanix CVM is what runs the Nutanix
software and serves all of the I/O operations for the
hypervisor and all VMs running on that host. For
the Nutanix units running VMware vSphere, the SCSI
controller, which manages the SSD and HDD devices, is
directly passed to the CVM leveraging VM-Direct Path
(Intel VT-d). In the case of Hyper-V, the storage devices are passed through to the CVM.

The following fi gure provides an example of what a typical node logically looks like:

Figure 3.1-2. Converged Platform

For a video explanation
you can watch the
following video:

https://www.youtube.com/
watch?v=OPYA5-V0yRo

59

3.1.2 Software-Defined

As mentioned above (likely numerous times), the Nutanix platform is a software-based
solution which ships as a bundled software + hardware appliance. The controller VM is
where the vast majority of the Nutanix software and logic sits and was designed from the
beginning to be an extensible and pluggable architecture. A key benefit to being software-
defined and not relying upon any hardware offloads or constructs is around extensibility. As
with any product life cycle, advancements and new features will always be introduced.
By not relying on any custom ASIC/FPGA or hardware capabilities, Nutanix can develop
and deploy these new features through a simple software update. This means that the
deployment of a new feature (e.g., deduplication) can be deployed by upgrading the current
version of the Nutanix software. This also allows newer generation features to be deployed
on legacy hardware models. For example, say you’re running a workload running an older
version of Nutanix software on a prior generation hardware platform (e.g., 2400). The
running software version doesn’t provide deduplication capabilities which your workload
could benefit greatly from. To get these features, you perform a rolling upgrade of the
Nutanix software version while the workload is running, and you now have deduplication.
It’s really that easy.

Similar to features, the ability to create new “adapters” or interfaces into DSF is another
key capability. When the product first shipped, it solely supported iSCSI for I/O from the
hypervisor, this has now grown to include NFS and SMB. In the future, there is the ability to
create new adapters for various workloads and hypervisors (HDFS, etc.). And again, all of
this can be deployed via a software update. This is contrary to most legacy infrastructures,
where a hardware upgrade or software purchase is normally required to get the “latest and
greatest” features. With Nutanix, it’s different. Since all features are deployed in software,
they can run on any hardware platform, any hypervisor, and be deployed through simple
software upgrades.

The following figure shows a logical representation of what this software-defined controller
framework looks like:

Figure 3.1-3. Software-Defined Controller Framework

Book of Acropolis

60

The Nutanix Bible

3.1.3 Cluster Components

The Nutanix platform is composed of
the following high-level components:

Figure 3.1-4. Nutanix Cluster Components

Cassandra

• Key Role: Distributed metadata store
• Description: Cassandra stores and manages all of the cluster metadata in a distributed
 ring-like manner based upon a heavily modifi ed Apache Cassandra. The Paxos
 algorithm is utilized to enforce strict consistency. This service runs on every node in the
 cluster. The Cassandra is accessed via an interface called Medusa.

Zookeeper

• Key Role: Cluster confi guration manager
• Description: Zookeeper stores all of the cluster confi guration including hosts, IPs, state,
 etc. and is based upon Apache Zookeeper. This service runs on three nodes in the
 cluster, one of which is elected as a leader. The leader receives all requests and forwards
 them to its peers. If the leader fails to respond, a new leader is automatically
 elected. Zookeeper is accessed via an interface called Zeus.

Stargate

• Key Role: Data I/O manager
• Description: Stargate is responsible for all data management and I/O operations and is
 the main interface from the hypervisor (via NFS, iSCSI, or SMB). This service runs on
every node in the cluster in order to serve localized I/O.

Curator
• Key Role: Map reduce cluster management and cleanup
• Description: Curator is responsible for managing and distributing tasks throughout the
 cluster, including disk balancing, proactive scrubbing, and many more items. Curator

For a video explanation
you can watch the
following video:

https://www.youtube.com/
watch?v=3v5RI_IbfV4&feature=youtu.be

61

 runs on every node and is controlled by an elected Curator Master who is responsible for
 the task and job delegation. There are two scan types for Curator, a full scan which
 occurs around every 6 hours and a partial scan which occurs every hour.

Prism
• Key Role: UI and API
• Description: Prism is the management gateway for component and administrators to
 configure and monitor the Nutanix cluster. This includes Ncli, the HTML5 UI, and REST
 API. Prism runs on every node in the cluster and uses an elected leader like all
 components in the cluster.

Genesis
• Key Role: Cluster component & service manager
• Description: Genesis is a process which runs on each node and is responsible for any
 services interactions (start/stop/etc.) as well as for the initial configuration. Genesis is
 a process which runs independently of the cluster and does not require the cluster to be
 configured/running. The only requirement for Genesis to be running is that Zookeeper
 is up and running. The cluster_init and cluster_status pages are displayed by the Genesis
 process.

Chronos
• Key Role: Job and task scheduler
• Description: Chronos is responsible for taking the jobs and tasks resulting from a
 Curator scan and scheduling/throttling tasks among nodes. Chronos runs on every
 node and is controlled by an elected Chronos Master that is responsible for the task and
 job delegation and runs on the same node as the Curator Master.

Cerebro
• Key Role: Replication/DR manager
• Description: Cerebro is responsible for the replication and DR capabilities of DSF. This
 includes the scheduling of snapshots, the replication to remote sites, and the
 migration/failover. Cerebro runs on every node in the Nutanix cluster and all nodes
 participate in replication to remote clusters/sites.

Pithos
• Key Role: vDisk configuration manager
• Description: Pithos is responsible for vDisk (DSF file) configuration data. Pithos runs on
 every node and is built on top of Cassandra.

3.1.4 Acropolis Services

An Acropolis Slave runs on every CVM with an elected Acropolis Master which is responsible
for task scheduling, execution, IPAM, etc. Similar to other components which have a Master,
if the Acropolis Master fails, a new one will be elected.

The role breakdown for each can be seen below:
• Acropolis Master
 Task scheduling & execution
 Stat collection / publishing
 Network Controller (for hypervisor)
 VNC proxy (for hypervisor)
 HA (for hypervisor)

Book of Acropolis

62

The Nutanix Bible

• Acropolis Slave
 Stat collection / publishing
 VNC proxy (for hypervisor)

Here we show a conceptual view of the Acropolis Master / Slave relationship:

Figure 3.1-5. Acropolis Services

3.1.5 Drive Breakdown

In this section, I’ll cover how the various storage devices (SSD / HDD) are broken down,
partitioned, and utilized by the Nutanix platform. NOTE: All of the capacities used are in
Base2 Gibibyte (GiB) instead of the Base10 Gigabyte (GB). Formatting of the drives with a
filesystem and associated overheads has also been taken into account.

SSD Devices

SSD devices store a few key items which are explained in greater detail above:
• Nutanix Home (CVM core)
• Cassandra (metadata storage)
• OpLog (persistent write buffer)
• Unified Cache (SSD cache portion)
• Extent Store (persistent storage)

The following figure shows an example of the storage breakdown for a Nutanix node’s SSD(s):

Figure 3.1-6. SSD Drive Breakdown

63

NOTE: The sizing for OpLog is done dynamically as of release 4.0.1 which will allow the
extent store portion to grow dynamically. The values used are assuming a completely
utilized OpLog. Graphics and proportions aren’t drawn to scale. When evaluating the
Remaining GiB capacities, do so from the top down. For example, the Remaining GiB
to be used for the OpLog calculation would be after Nutanix Home and Cassandra
have been subtracted from the formatted SSD capacity.

Nutanix Home is mirrored across the first two SSDs to ensure availability. Cassandra is on the
first SSD by default, and if that SSD fails the CVM will be restarted and Cassandra storage
will then be on the 2nd.

Most models ship with 1 or 2 SSDs, however the same construct applies for models shipping
with more SSD devices. For example, if we apply this to an example 3060 or 6060 node
which has 2 x 400GB SSDs, this would give us 100GiB of OpLog, 40GiB of Unified Cache, and
~440GiB of Extent Store SSD capacity per node.

HDD Devices

Since HDD devices are primarily used for bulk storage, their breakdown is much simpler:
• Curator Reservation (Curator storage)
• Extent Store (persistent storage)

Figure 3.1-7. HDD Drive Breakdown

For example, if we apply this to an example 3060 node which has 4 x 1TB HDDs, this would
give us 80GiB reserved for Curator and ~3.4TiB of Extent Store HDD capacity per node.

NOTE: the above values are accurate as of 4.0.1 and may vary by release.

3.2 Distributed Storage Fabric
Together, a group of Nutanix nodes forms a distributed platform called the Acropolis
Distributed Storage Fabric (DSF). DSF appears to the hypervisor like any centralized
storage array, however all of the I/Os are handled locally to provide the highest performance.
More detail on how these nodes form a distributed system can be found in the next section.

The following figure shows an example of how these Nutanix nodes form DSF:

Book of Acropolis

64

The Nutanix Bible

Figure 3.2-1. Distributed Storage Fabric Overview
3.2.1 Data Structure

The Acropolis Distributed Storage Fabric is composed of the following high-level struct:

Storage Pool
• Key Role: Group of physical devices
• Description: A storage pool is a group of physical storage devices including PCIe SSD,

SSD, and HDD devices for the cluster. The storage pool can span multiple Nutanix nodes
and is expanded as the cluster scales. In most configurations, only a single storage pool
is leveraged.

Container
• Key Role: Group of VMs/files
• Description: A container is a logical segmentation of the Storage Pool and contains

a group of VM or files (vDisks). Some configuration options (e.g., RF) are configured
at the container level, however are applied at the individual VM/file level. Containers
typically have a 1 to 1 mapping with a datastore (in the case of NFS/SMB).

vDisk
• Key Role: vDisk
• Description: A vDisk is any file over 512KB on DSF including .vmdks and VM hard disks.

vDisks are composed of extents which are grouped and stored on disk as an extent group.

Maximum DSF vDisk Size
No artificial limits are imposed on the vdisk size on the DSF/stargate side. As of 4.6,
the vdisk size is stored as a 64 bit signed integer that stores the size in bytes. This
means the theoretical maximum vDisk size can be 2^63-1 or 9E18 (9 Exabytes). Any
limits below this value would be due to limitations on the client side, such as the
maximum vmdk size on ESXi.

The following figure shows how these map between DSF and the hypervisor:

Figure 3.2-2. High-level Filesystem Breakdown

65

Extent
• Key Role: Logically contiguous data
• Description: An extent is a 1MB piece of logically contiguous data which consists of n

number of contiguous blocks (varies depending on guest OS block size). Extents are
written/read/modified on a sub-extent basis (aka slice) for granularity and efficiency. An
extent’s slice may be trimmed when moving into the cache depending on the amount of
data being read/cached.

Extent Group
• Key Role: Physically contiguous stored data
• Description: An extent group is a 1MB or 4MB piece of physically contiguous stored

data. This data is stored as a file on the storage device owned by the CVM. Extents are
dynamically distributed among extent groups to provide data striping across nodes/
disks to improve performance. NOTE: as of 4.0, extent groups can now be either 1MB or
4MB depending on dedupe.

The following figure shows how these structs relate between the various file systems:

Figure 3.2-3. Low-level Filesystem Breakdown

Here is another graphical representation of how these units are related:

Figure 3.2-4. Graphical Filesystem Breakdown

Book of Acropolis

66

The Nutanix Bible

3.2.2 I/O Path and Caxhe

The Nutanix I/O path is composed of the following high-level components:

 Figure 3.2-5. DSF I/O Path

OpLog
• Key Role: Persistent write buff er
• Description: The OpLog is similar to a fi lesystem journal and is built as a staging area

to handle bursts of random writes, coalesce them, and then sequentially drain the data
to the extent store. Upon a write, the OpLog is synchronously replicated to another
n number of CVM’s OpLog before the write is acknowledged for data availability
purposes. All CVM OpLogs partake in the replication and are dynamically chosen based
upon load. The OpLog is stored on the SSD tier on the CVM to provide extremely fast
write I/O performance, especially for random I/O workloads. For sequential workloads,
the OpLog is bypassed and the writes go directly to the extent store. If data is currently
sitting in the OpLog and has not been drained, all read requests will be directly fulfi lled
from the OpLog until they have been drained, where they would then be served by the
extent store/unifi ed cache. For containers where fi ngerprinting (aka Dedupe) has been
enabled, all write I/Os will be fi ngerprinted using a hashing scheme allowing them to be
deduplicated based upon fi ngerprint in the unifi ed cache.

Per-vDisk OpLog Sizing
The OpLog is a shared resource, however allocation is done on a per-vDisk basis to
ensure each vDisk has an equal opportunity to leverage. This is implemented through a
per-vDisk OpLog limit (max amount of data per-vDisk in the OpLog). VMs with multiple
vDisk(s) will be able to leverage the per-vDisk limit times the number of disk(s).

The per-vDisk OpLog limit is currently 6GB (as of 4.6), up from 2GB in prior versions.

This is controlled by the following Gfl ag: vdisk_distributed_oplog_max_dirty_MB.

For a video explanation
you can watch the
following video:

https://www.youtube.com/watch?v
=SULqVPVXefY&feature=youtu.be

67

Extent Store
• Key Role: Persistent data storage
• Description: The Extent Store is the persistent bulk storage of DSF and spans SSD and

HDD and is extensible to facilitate additional devices/tiers. Data entering the extent
store is either being A) drained from the OpLog or B) is sequential in nature and has
bypassed the OpLog directly. Nutanix ILM will determine tier placement dynamically
based upon I/O patterns and will move data between tiers.

Sequential Write Characterization
Write IO is deemed as sequential when there is more than 1.5MB of outstanding
write IO to a vDisk (as of 4.6). IOs meeting this will bypass the OpLog and go
directly to the Extent Store since they are already large chunks of aligned data and
won’t benefit from coalescing.

This is controlled by the following Gflag:
vdisk_distributed_oplog_skip_min_outstanding_write_bytes.

All other IOs, including those which can be large (e.g. >64K) will still be handled by the OpLog.

Unified Cache
• Key Role: Dynamic read cache
• Description: The Unified Cache is a deduplicated read cache which spans both the

CVM’s memory and SSD. Upon a read request of data not in the cache (or based upon
a particular fingerprint), the data will be placed into the single-touch pool of the Unified
Cache which completely sits in memory, where it will use LRU until it is evicted from the
cache. Any subsequent read request will “move” (no data is actually moved, just cache
metadata) the data into the memory portion of the multi-touch pool, which consists
of both memory and SSD. From here there are two LRU cycles, one for the in-memory
piece upon which eviction will move the data to the SSD section of the multi-touch pool
where a new LRU counter is assigned. Any read request for data in the multi-touch pool
will cause the data to go to the peak of the multi-touch pool where it will be given a new
LRU counter.

The following figure shows a high-level overview of the Content Cache:

Figure 3.2.6. DSF Content Cache

Book of Acropolis

68

The Nutanix Bible

Cache Granularity and Logic
Data is brought into the cache at a 4K granularity and all caching is done real-time (e.g.
no delay or batch process data to pull data into the cache).

Each CVM has its own local cache that it manages for the vDisk(s) it is hosting (e.g.
VM(s) running on the same node). When a vDisk is cloned (e.g. new clones, snapshots,
etc.) each new vDisk has it’s own block map and the orignial vDisk is marked as
immutable. This allows us to ensure that each CVM can have it’s own cached copy of
the base vDisk with cache coherency.

In the event of an overwrite, that will be re-directed to a new extent in the VM’s own
block map. This ensures that there will not be any cache corruption.

Extent Cache
• Key Role: In-memory read cache
• Description: The Extent Cache is an in-memory read cache that is completely in

the CVM’s memory. This will store non-fi ngerprinted extents for containers where
fi ngerprinting and deduplication are disabled. As of version 3.5, this is separate from the
Content Cache, however these are merged in 4.5 with the unifi ed cache.

3.2.3 Scalable Metadata

Metadata is at the core of any intelligent system and is
even more critical for any fi lesystem or storage array.
In terms of DSF, there are a few key structs that are
critical for its success: it has to be right 100% of the
time (known as “strictly consistent”), it has to be scal-
able, and it has to perform at massive scale. As men-
tioned in the architecture section above, DSF utilizes a
“ring-like” structure as a key-value store which stores
essential metadata as well as other platform data (e.g.,
stats, etc.). In order to ensure metadata availability
and redundancy a RF is utilized among an odd amount
of nodes (e.g., 3, 5, etc.). Upon a metadata write or
update, the row is written to a node in the ring and then
replicated to n number of peers (where n is dependent
on cluster size). A majority of nodes must agree before
anything is committed, which is enforced using the Paxos algorithm. This ensures strict con-
sistency for all data and metadata stored as part of the platform.

The following fi gure shows an example of a metadata insert/update for a 4 node cluster:

Figure 3.2-7. Cassandra Ring Structure

For a video explanation
you can watch the
following video:

https://www.youtube.com/watch?v
=MlQczJhQI3U&feature=youtu.be

69

Performance at scale is also another important struct for DSF metadata. Contrary to tra-
ditional dual-controller or “master” models, each Nutanix node is responsible for a subset
of the overall platform’s metadata. This eliminates the traditional bottlenecks by allowing
metadata to be served and manipulated by all nodes in the cluster. A consistent hashing
scheme is utilized to minimize the redistribution of keys during cluster size modifi cations
(also known as “add/remove node”) When the cluster scales (e.g., from 4 to 8 nodes), the
nodes are inserted throughout the ring between nodes for “block awareness” and reliability.

The following fi gure shows an example of the metadata “ring” and how it scales:

Figure 3.2-8. Cassandra Scale Out

3.2.4 Data Protection

The Nutanix platform currently uses a resiliency
factor, also known as a replication factor (RF), and
checksum to ensure data redundancy and availability
in the case of a node or disk failure or corruption. As
explained above, the OpLog acts as a staging area
to absorb incoming writes onto a low-latency SSD
tier. Upon being written to the local OpLog, the data
is synchronously replicated to another one or two
Nutanix CVM’s OpLog (dependent on RF) before
being acknowledged (Ack) as a successful write to the
host. This ensures that the data exists in at least two
or three independent locations and is fault tolerant.
NOTE: For RF3, a minimum of 5 nodes is required since
metadata will be RF5.

Data RF is confi gured via Prism and is done at the container level. All nodes participate in
OpLog replication to eliminate any “hot nodes”, ensuring linear performance at scale. While
the data is being written, a checksum is computed and stored as part of its metadata. Data
is then asynchronously drained to the extent store where the RF is implicitly maintained.
In the case of a node or disk failure, the data is then re-replicated among all nodes in the
cluster to maintain the RF. Any time the data is read, the checksum is computed to ensure
the data is valid. In the event where the checksum and data don’t match, the replica of the
data will be read and will replace the non-valid copy.

Book of Acropolis

For a video explanation
you can watch the
following video:

https://www.youtube.com/watch?v
=OWhdo81yTpk&feature=youtu.be

70

The Nutanix Bible

Data is also consistently monitored to ensure integrity even when active I/O isn’t occurring.
Stargate’s scrubber operation will consistently scan through extent groups and perform
checksum validation when disks aren’t heavily utilized. This protects against things like bit
rot or corrupted sectors.

The following fi gure shows an example of what this logically looks like:

Figure 3.2-9. DSF Data Protection

3.2.5 Availability Domains

Availability Domains (aka node/block/rack awareness)
is a key struct for distributed systems to abide by for
determining component and data placement. DSF
is currently node and block aware, however this will
increase to rack aware as cluster sizes grow. Nutanix
refers to a “block” as the chassis which contains either
one, two, or four server “nodes”. NOTE: A minimum
of 3 blocks must be utilized for block awareness to be
activated, otherwise node awareness will be defaulted to.

It is recommended to utilized uniformly populated blocks to
ensure block awareness is enabled. Common scenarios
and the awareness level utilized can be found at the
bottom of this section. The 3-block requirement is due
to ensure quorum. For example, a 3450 would be a block
which holds 4 nodes. The reason for distributing roles or
data across blocks is to ensure if a block fails or needs maintenance the system can continue to
run without interruption.
NOTE: Within a block, the redundant PSU and fans are the only shared components Awareness
can be broken into a few key focus areas:
• Data (The VM data)
• Metadata (Cassandra)
• Confi guration Data (Zookeeper)

For a video explanation
you can watch the
following video:

https://www.youtube.com/watch?v
=LDaNY9AJDn8&feature=youtu.be

71

Data

With DSF, data replicas will be written to other blocks in the cluster to ensure that in the
case of a block failure or planned downtime, the data remains available. This is true for both
RF2 and RF3 scenarios, as well as in the case of a block failure. An easy comparison would
be “node awareness”, where a replica would need to be replicated to another node which
will provide protection in the case of a node failure. Block awareness further enhances this
by providing data availability assurances in the case of block outages.

The following figure shows how the replica placement would work in a 3-block deployment:

Figure 3.2-10. Block Aware Replica Placement
In the case of a block failure, block awareness will be maintained and the re-replicated
blocks will be replicated to other blocks within the cluster:

Figure 3.2-11. Block Failure Replica Placement

Book of Acropolis

72

The Nutanix Bible

Awareness Conditions and Tolerance

Below we breakdown some common scenarios and the level of tolerance:

As of Acropolis base software version 4.5 and later block awareness is best effort and
doesn’t have strict requirements for enabling. This was done to ensure clusters with skewed
storage resources (e.g. storage heavy nodes) don’t disable the feature. With that stated, it is
however still a best practice to have uniform blocks to minimize any storage skew.

Prior to 4.5 the following conditions must be met:
• If SSD or HDD tier variance between blocks is > max variance: NODE awareness
• If SSD and HDD tier variance between blocks is < max variance: BLOCK + NODE
 awareness

Max tier variance is calculated as: 100 / (RF+1)
• E.g., 33% for RF2 or 25% for RF3

Metadata

As mentioned in the Scalable Metadata section above, Nutanix leverages a heavily modified
Cassandra platform to store metadata and other essential information. Cassandra leverages
a ring-like structure and replicates to n number of peers within the ring to ensure data
consistency and availability.

The following figure shows an example of the Cassandra’s ring for a 12-node cluster:

Figure 3.2-12. 12 Node Cassandra Ring

Simultaneous Failure Tolerance

Number of Blocks Awareness Type Cluster FT1 Cluster FT2

<3 NODE SINGLE NODE DUAL NODE

3-5 NODE+BLOCK
SINGLE BLOCK
(up to 4 nodes)

SINGLE BLOCK
(up to 4 nodes)

5+ NODE+BLOCK
SINGLE BLOCK
(up to 4 nodes)

DUAL BLOCK
(up to 8 nodes)

73

Book of Acropolis

Cassandra peer replication iterates through nodes in a clockwise manner throughout the
ring. With block awareness, the peers are distributed among the blocks to ensure no two
peers are on the same block.

The following figure shows an example node layout translating the ring above into the block
based layout:

Figure 3.2-13. Cassandra Node Block Aware Placement
With this block-aware nature, in the event of a block failure there will still be at least two
copies of the data (with Metadata RF3 – In larger clusters RF5 can be leveraged).

The following figure shows an example of all of the nodes replication topology to form the
ring (yes – it’s a little busy):

Figure 3.2-14. Full Cassandra Node Block Aware Placement

74

The Nutanix Bible

Metadata Awareness Conditions

Below we breakdown some common scenarios and what level of awareness will be utilized:

• FT1 (Data RF2 / Metadata RF3) will be block aware if:
 > 3 blocks
 Let X be the number of nodes in the block with max nodes. Then, the remaining blocks should have at
 least 2X nodes.
Example: 4 blocks with 2,3,4,2 nodes per block respectively.
 The max node block has 4 nodes which means the other 3 blocks should have 2x4 (8) nodes. In this
 case it WOULD NOT be block aware as the remaining blocks only have 7 nodes.

Example: 4 blocks with 3,3,4,3 nodes per block respectively.
 The max node block has 4 nodes which means the other 3 blocks should have 2x4==8 nodes. In this case it WOULD
 be block aware as the remaining blocks have 9 nodes which is above our minimum.

• FT2 (Data RF3 / Metadata RF5) will be block aware if:
 > 5 blocks
 Let X be the number of nodes in the block with max nodes. Then, the remaining blocks should have at
 least 4X nodes.
Example: 6 blocks with 2,3,4,2,3,3 nodes per block respectively.
 The max node block has 4 nodes which means the other 3 blocks should have 4x4==16 nodes. In this case it
 WOULD NOT be block aware as the remaining blocks only have 13 nodes.

Example: 6 blocks with 2,4,4,4,4,4 nodes per block respectively.
 The max node block has 4 nodes which means the other 3 blocks should have 4x4==16 nodes. In this case it
 WOULD be block aware as the remaining blocks have 18 nodes which is above our minimum.

Configuration Data

Nutanix leverages Zookeeper to store essential configuration data for the cluster. This role is
also distributed in a block-aware manner to ensure availability in the case of a block failure.

The following figure shows an example layout showing 3 Zookeeper nodes distributed in a
block-aware manner:

Figure 3.2-15. Zookeeper Block Aware Placement

In the event of a block outage, meaning one of the Zookeeper nodes will be gone, the

75

Book of Acropolis

For a video explanation
you can watch the
following video:

https://www.youtube.com/watch?v=
SJIb_mTdMPg&feature=youtu.be

Zookeeper role would be transferred to another node in the cluster as shown below:

Figure 3.2-16. Zookeeper Placement Block Failure

When the block comes back online, the Zookeeper role would be transferred back to
maintain block awareness.

NOTE: Prior to 4.5, this migration was not automatic and must be done manually.

3.2.6 Data Path Resiliency

Reliability and resiliency are key, if not the most important
concepts within DSF or any primary storage platform.

Contrary to traditional architectures which are built
around the idea that hardware will be reliable, Nutanix
takes a diff erent approach: it expects hardware will
eventually fail. By doing so, the system is designed to
handle these failures in an elegant and non-disruptive
manner.
NOTE: That doesn’t mean the hardware quality isn’t
there, just a concept shift. The Nutanix hardware and
QA teams undergo an exhaustive qualifi cation and
vetting process.

Potential levels of failure

Being a distributed system, DSF is built to handle
component, service, and CVM failures, which can be characterized on a few levels:
• Disk Failure
• CVM “Failure”
• Node Failure

Disk Failure
A disk failure can be characterized as just that, a disk which has either been removed, had a
dye failure, or is experiencing I/O latency or errors and has been proactively removed. The
Nutanix platform monitors disk health via SMART data and abrupt. Hades is the component
which is responsible for monitoring disk health and marking [on/off]line.

76

The Nutanix Bible

VM impact:
• HA event: No
• Failed I/Os: No
• Latency: No impact

In the event of a disk failure, a Curator scan (MapReduce Framework) will occur immediately.
It will scan the metadata (Cassandra) to find the data previously hosted on the failed disk
and the nodes / disks hosting the replicas.
Once it has found that data that needs to be “re-replicated”, it will distribute the replication
tasks to the nodes throughout the cluster.
An important thing to highlight here is given how Nutanix distributes data and replicas
across all nodes / CVMs / disks; all nodes / CVMs / disks will participate in the re-replication.
This substantially reduces the time required for re-protection, as the power of the full cluster
can be utilized; the larger the cluster, the faster the re-protection.

CVM “Failure”
A CVM “failure” can be characterized as a CVM power action causing the CVM to be
temporarily unavailable. The system is designed to transparently handle these gracefully.
In the event of a failure, I/Os will be re-directed to other CVMs within the cluster. The
mechanism for this will vary by hypervisor.
The rolling upgrade process actually leverages this capability as it will upgrade one CVM at a
time, iterating through the cluster.
VM impact:
• HA event: No
• Failed I/Os: No
• Latency: Potentially higher given I/Os over the network

In the event of a CVM “failure” the I/O which was previously being served from the down
CVM, will be forwarded to other CVMs throughout the cluster. ESXi and Hyper-V handle this
via a process called CVM Autopathing, which leverages HA.py (like “happy”), where it will
modify the routes to forward traffic going to the internal address (192.168.5.2) to the external
IP of other CVMs throughout the cluster. This enables the datastore to remain intact, just the
CVM responsible for serving the I/Os is remote.
Once the local CVM comes back up and is stable, the route would be removed and the local
CVM would take over all new I/Os.
In the case of KVM, iSCSI multi-pathing is leveraged where the primary path is the local CVM
and the two other paths would be remote. In the event where the primary path fails, one of
the other paths will become active.
Similar to Autopathing with ESXi and Hyper-V, when the local CVM comes back online, it’ll
take over as the primary path.

Node Failure
VM Impact:
• HA event: Yes
• Failed I/Os: No
• Latency: No impact
In the event of a node failure, a VM HA event will occur restarting the VMs on other nodes
throughout the virtualization cluster. Once restarted, the VMs will continue to perform I/Os
as usual which will be handled by their local CVMs.

Similar to the case of a disk failure above, a Curator scan will find the data previously hosted
on the node and its respective replicas.
Similar to the disk failure scenario above, the same process will take place to re-protect the
data, just for the full node (all associated disks).

77

Book of Acropolis

Data Transform Application(s) Comments

Erasure Coding All

Provides higher availability with reduced overheads
than traditional RF. No impact to normal write or read I/O
performance. Does have some read overhead in the case of
a disk / node / block failure where data must be decoded.

Inline Compression All
No impact to random I/O, helps increase storage tier
utilization. Benefits large or sequential I/O performance by
reducing data to replicate and read from disk.

Offline Compression None
Given inline compression will compress only large or
sequential writes inline and do random or small I/Os post-
process, that should be used instead.

Perf Tier Dedup
P2V/V2V,Hyper-V (ODX),Cross-
container clones

Greater cache efficiency for data which wasn’t cloned or
created using efficient Acropolis clones.

Capacity Tier Dedup Same as perf tier dedup Benefits of above with reduced overhead on disk.

In the event where the node remains down for a prolonged period of time, the down CVM
will be removed from the metadata ring. It will be joined back into the ring after it has been
up and stable for a duration of time.

Pro tip
Data resiliency state will be shown in Prism on the dashboard page.

You can also check data resiliency state via the cli:

 # Node status
 ncli cluster get-domain-fault-tolerance-status type=node

 # Block status
 ncli cluster get-domain-fault-tolerance-status type=rackable_unit

These should always be up to date, however to refresh the data you can kick off a
Curator partial scan.

3.2.7 Capacity Optimization

The Nutanix platform incorporates a wide range of storage optimization technologies
that work in concert to make efficient use of available capacity for any workload. These
technologies are intelligent and adaptive to workload characteristics, eliminating the need
for manual configuration and fine-tuning.

The following optimizations are leveraged:
• Erasure Coding
• Compression
• Deduplication

More detail on how each of these features can be found in the following sections.

The table describes which optimizations are applicable to workloads a high-level:

78

The Nutanix Bible

FT1 (RF2 equiv.) FT2 (RF3 equiv.)

Cluster Size
(nodes)

EC Strip Size
(data/parity blocks)

EC Overhead
(vs. 2X of RF2)

EC Strip Size
(data/parity)

EC Overhead
(vs. 3X of RF3)

4 2/1 1.5X N/A N/A

5 3/1 1.33X N/A N/A

6 4/1 1.25X N/A N/A

7+ 4/1 1.25X 4/2 1.5X

3.2.7.1 Erasure Coding

The Nutanix platform leverages a replication factor (RF) for data protection and availability.
This method provides the highest degree of availability because it does not require reading
from more than one storage location or data re-computation on failure. However, this does
come at the cost of storage resources as full copies are required.
To provide a balance between availability while reducing the amount of storage required,
DSF provides the ability to encode data using erasure codes (EC).

Similar to the concept of RAID (levels 4, 5, 6, etc.) where parity is calculated, EC encodes
a strip of data blocks on different nodes and calculates parity. In the event of a host and/
or disk failure, the parity can be leveraged to calculate any missing data blocks (decoding).
In the case of DSF, the data block is an extent group and each data block must be on a
different node and belong to a different vDisk.

The number of data and parity blocks in a strip is configurable based upon the desired
failures to tolerate. The configuration is commonly referred to as the number of <data
blocks>/<number of parity blocks>.

For example, “RF2 like” availability (e.g., N+1) could consist of 3 or 4 data blocks and 1 parity
block in a strip (e.g., 3/1 or 4/1). “RF3 like” availability (e.g. N+2) could consist of 3 or 4 data
blocks and 2 parity blocks in a strip (e.g. 3/2 or 4/2).

Pro tip
You can override the default strip size (4/1 for “RF2 like” or 4/2 for “RF3 like”) via NCLI
‘ctr [create / edit] … erasure-code=<N>/<K>’ where N is the number of data blocks
and K is the number of parity blocks.

The expected overhead can be calculated as <# parity blocks> / <# data blocks>. For
example, a 4/1 strip has a 25% overhead or 1.25X compared to the 2X of RF2. A 4/2 strip has
a 50% overhead or 1.5X compared to the 3X of RF3.

The following table characterizes the encoded strip sizes and example overheads:

Pro tip
It is always recommended to have a cluster size which has at least 1 more node than
the combined strip size (data + parity) to allow for rebuilding of the strips in the event
of a node failure. This eliminates any computation overhead on reads once the strips
have been rebuilt (automated via Curator). For example, a 4/1 strip should have at
least 6 nodes in the cluster. The previous table follows this best practice.

79

Book of Acropolis

The encoding is done post-process and leverages the Curator MapReduce framework for
task distribution. Since this is a post-process framework, the traditional write I/O path is
unaffected.

A normal environment using RF would look like the following:

Figure 3.2-17. Typical DSF RF Data Layout

In this scenario, we have a mix of both RF2 and RF3 data whose primary copies are local and
replicas are distributed to other nodes throughout the cluster.

When a Curator full scan runs, it will find eligible extent groups which are available to
become encoded. Eligible extent groups must be “write-cold” meaning they haven’t been
written to for > 1 hour. After the eligible candidates are found, the encoding tasks will be
distributed and throttled via Chronos.

The following figure shows an example 4/1 and 3/2 strip:

Figure 3.2-18. DSF Encoded Strip - Pre-savings

80

The Nutanix Bible

For a video explanation
you can watch the
following video:

https://www.youtube.com/watch?v
=ERDqOCzDcQY&feature=youtu.be

Once the data has been successfully encoded (strips and parity calculation), the replica
extent groups are then removed.

The following fi gure shows the environment after EC has run with the storage savings:

Figure 3.2-19. DSF Encoded Strip - Post-savings

Pro tip
Erasure Coding pairs perfectly with inline compression which will add to the storage
savings. I leverage inline compression + EC in my environments.

3.2.7.2 Compression

The Nutanix Capacity Optimization Engine (COE)
is responsible for performing data transformations
to increase data effi ciency on disk. Currently
compression is one of the key features of the COE to
perform data optimization. DSF provides both inline
and offl ine fl avors of compression to best suit the
customer’s needs and type of data.

Inline compression will compress sequential streams of
data or large I/O sizes in memory before it is written
to disk, while offl ine compression will initially write
the data as normal (in an un-compressed state) and
then leverage the Curator framework to compress
the data cluster wide. When inline compression is
enabled but the I/Os are random in nature, the data will
be written un-compressed in the OpLog, coalesced, and
then compressed in memory before being written to the Extent Store. The Google Snappy
compression library is leveraged which provides good compression ratios with minimal
computational overhead and extremely fast compression / decompression rates.
The following fi gure shows an example of how inline compression interacts with the DSF
write I/O path:

81

Figure 3.2-20. Inline Compression I/O Path

Pro tip
Almost always use inline compression (compression delay = 0) as it will only compress
larger / sequential writes and not impact random write performance.

Inline compression also pairs perfectly with erasure coding.

For offline compression, all new write I/O is written in an un-compressed state and follows
the normal DSF I/O path. After the compression delay (configurable) is met and the data
has become cold (down-migrated to the HDD tier via ILM), the data is eligible to become
compressed. Offline compression uses the Curator MapReduce framework and all nodes will
perform compression tasks. Compression tasks will be throttled by Chronos.

The following figure shows an example of how offline compression interacts with the DSF
write I/O path:

Figure 3.2-21. Offline Compression I/O Path

For read I/O, the data is first decompressed in memory and then the I/O is served. For data
that is heavily accessed, the data will become decompressed in the HDD tier and can then
leverage ILM to move up to the SSD tier as well as be stored in the cache.

Book of Acropolis

82

The Nutanix Bible

The following fi gure shows an example of how decompression interacts with the DSF I/O
path during read:

Figure 3.2-22. Decompression I/O Path

You can view the current compression rates via Prism on the Storage > Dashboard page.

3.2.7.3 Elastic Dedupe Engine

The Elastic Dedupe Engine is a software-based feature
of DSF which allows for data deduplication in the
capacity (HDD) and performance (SSD/Memory) tiers.
Streams of data are fi ngerprinted during ingest using a
SHA-1 hash at a 16K granularity. This fi ngerprint is only
done on data ingest and is then stored persistently as
part of the written block’s metadata.

NOTE: Initially a 4K granularity was used for
fi ngerprinting, however after testing 16K off ered the
best blend of deduplication with reduced metadata
overhead. Deduplicated data is pulled into the content
cache at a 4K granularity.

Contrary to traditional approaches which utilize
background scans requiring the data to be re-read,
Nutanix performs the fi ngerprint inline on ingest. For
duplicate data that can be deduplicated in the capacity tier, the data does not need to be
scanned or re-read, essentially duplicate copies can be removed.

To make the metadata overhead more effi cient, fi ngerprint refcounts are monitored to
track dedupability. Fingerprints with low refcounts will be discarded to minimize the
metadata overhead. To minimize fragmentation full extents will be preferred for capacity tier
deduplication.

For a video explanation
you can watch the
following video:

https://www.youtube.com/watch?
v=C-rp13cDpNw&feature=youtu.be

83

Pro tip
Use performance tier deduplication on your base images (you can manually fingerprint
them using vdisk_manipulator) to take advantage of the content cache.

Use capacity tier deduplication for P2V / V2V, when using Hyper-V since ODX does a
full data copy, or when doing cross-container clones (not usually recommended as a
single container is preferred).

In most other cases compression will yield the highest capacity savings and should
be used instead.

The following figure shows an example of how the Elastic Dedupe Engine scales and handles
local VM I/O requests:

Figure 3.2-23. Elastic Dedupe Engine - Scale

Fingerprinting is done during data ingest of data with an I/O size of 64K or greater (initial I/O
or when draining from OpLog). Intel acceleration is leveraged for the SHA-1 computation which
accounts for very minimal CPU overhead. In cases where fingerprinting is not done during
ingest (e.g., smaller I/O sizes), fingerprinting can be done as a background process. The Elastic
Deduplication Engine spans both the capacity disk tier (HDD), but also the performance tier
(SSD/Memory). As duplicate data is determined, based upon multiple copies of the same
fingerprints, a background process will remove the duplicate data using the DSF MapReduce
framework (Curator). For data that is being read, the data will be pulled into the DSF Unified
Cache which is a multi-tier/pool cache. Any subsequent requests for data having the same
fingerprint will be pulled directly from the cache. To learn more about the Unified Cache and
pool structure, please refer to the ‘Unified Cache’ sub-section in the I/O path overview.

Fingerprinted vDisk Offsets

As of 4.6.1 there is no limit and the full vDisk can be fingerprinted / deduped.
Prior to 4.6.1 this was increased to 24GB due to higher metadata efficiencies. Prior to
4.5 only the first 12GB of a vDisk was eligible to be fingerprinted. This was done to
maintain a smaller metadata footprint and since the OS is normally the most common
data.

Book of Acropolis

84

The Nutanix Bible

The following figure shows an example of how the Elastic Dedupe Engine interacts with the
DSF I/O path:

Figure 3.2-24. EDE I/O Path

You can view the current deduplication rates via Prism on the Storage > Dashboard page.

Dedup + Compression
As of 4.5 both deduplication and compression can be enabled on the same container.
However, unless the data is dedupable (conditions explained earlier in section), stick
with compression.

3.2.8 Storage Tiering and Prioritization

The Disk Balancing section above talked about how storage capacity was pooled among
all nodes in a Nutanix cluster and that ILM would be used to keep hot data local. A similar
concept applies to disk tiering, in which the cluster’s SSD and HDD tiers are cluster-wide
and DSF ILM is responsible for triggering data movement events. A local node’s SSD tier is
always the highest priority tier for all I/O generated by VMs running on that node, however
all of the cluster’s SSD resources are made available to all nodes within the cluster. The SSD
tier will always offer the highest performance and is a very important thing to manage for
hybrid arrays.

The tier prioritization can be classified at a high-level by the following:

Figure 3.2-25. DSF Tier Prioritization

85

Specific types of resources (e.g. SSD, HDD, etc.) are pooled together and form a cluster wide
storage tier. This means that any node within the cluster can leverage the full tier capacity,
regardless if it is local or not.

The following figure shows a high level example of what this pooled tiering looks like:

Figure 3.2-26. DSF Cluster-wide Tiering

A common question is what happens when a local node’s SSD becomes full? As mentioned
in the Disk Balancing section, a key concept is trying to keep uniform utilization of devices
within disk tiers. In the case where a local node’s SSD utilization is high, disk balancing will
kick in to move the coldest data on the local SSDs to the other SSDs throughout the cluster.
This will free up space on the local SSD to allow the local node to write to SSD locally
instead of going over the network. A key point to mention is that all CVMs and SSDs are
used for this remote I/O to eliminate any potential bottlenecks and remediate some of the
hit by performing I/O over the network.

Figure 3.2-27. DSF Cluster-wide Tier Balancing

The other case is when the overall tier utilization breaches a specific threshold [curator_
tier_usage_ilm_threshold_percent (Default=75)] where DSF ILM will kick in and as part
of a Curator job will down-migrate data from the SSD tier to the HDD tier. This will bring
utilization within the threshold mentioned above or free up space by the following amount
[curator_tier_free_up_percent_by_ilm (Default=15)], whichever is greater. The data for
down-migration is chosen using last access time. In the case where the SSD tier utilization is

Book of Acropolis

86

The Nutanix Bible

95%, 20% of the data in the SSD tier will be moved to the HDD tier (95% –> 75%).
However, if the utilization was 80%, only 15% of the data would be moved to the HDD tier
using the minimum tier free up amount.

Figure 3.2-28. DSF Tier ILM

DSF ILM will constantly monitor the I/O patterns and (down/up) migrate data as necessary
as well as bring the hottest data local regardless of tier.

3.2.9 Disk Balancing

DSF is designed to be a very dynamic platform
which can react to various workloads as well as allow
heterogeneous node types: compute heavy (3050,
etc.) and storage heavy (60X0, etc.) to be mixed
in a single cluster. Ensuring uniform distribution of
data is an important item when mixing nodes with
larger storage capacities. DSF has a native feature,
called disk balancing, which is used to ensure uniform
distribution of data throughout the cluster. Disk
balancing works on a node’s utilization of its local
storage capacity and is integrated with DSF ILM. Its
goal is to keep utilization uniform among nodes once
the utilization has breached a certain threshold.

The following fi gure shows an example of a mixed cluster (3050 + 6050) in an “unbalanced” state:

Figure 3.2-29. Disk Balancing - Unbalanced State

For a video explanation
you can watch the
following video:

https://www.youtube.com/
watch?v=OPYA5-V0yRo

87

Book of Acropolis

Disk balancing leverages the DSF Curator framework and is run as a scheduled process as
well as when a threshold has been breached (e.g., local node capacity utilization > n %). In
the case where the data is not balanced, Curator will determine which data needs to be
moved and will distribute the tasks to nodes in the cluster. In the case where the node types
are homogeneous (e.g., 3050), utilization should be fairly uniform. However, if there are
certain VMs running on a node which are writing much more data than others, there can
become a skew in the per node capacity utilization. In this case, disk balancing would run
and move the coldest data on that node to other nodes in the cluster. In the case where the
node types are heterogeneous (e.g., 3050 + 6020/50/70), or where a node may be used in a
“storage only” mode (not running any VMs), there will likely be a requirement to move data.

The following figure shows an example the mixed cluster after disk balancing has been run in
a “balanced” state:

Figure 3.2-30. Disk Balancing - Balanced State

In some scenarios, customers might run some nodes in a “storage-only” state where only the
CVM will run on the node whose primary purpose is bulk storage capacity. In this case, the
full node’s memory can be added to the CVM to provide a much larger read cache.

The following figure shows an example of how a storage only node would look in a mixed
cluster with disk balancing moving data to it from the active VM nodes:

Figure 3.2-31. Disk Balancing - Storage Only Node

88

The Nutanix Bible

3.2.10 Snapshots and Clones

DSF provides native support for offl oaded snapshots
and clones which can be leveraged via VAAI, ODX,
ncli, REST, Prism, etc. Both the snapshots and clones
leverage the redirect-on-write algorithm which is the
most eff ective and effi cient. As explained in the Data
Structure section above, a virtual machine consists
of fi les (vmdk/vhdx) which are vDisks on the Nutanix
platform.

A vDisk is composed of extents which are logically
contiguous chunks of data, which are stored within
extent groups which are physically contiguous
data stored as fi les on the storage devices. When a
snapshot or clone is taken, the base vDisk is marked
immutable and another vDisk is created as read/
write. At this point, both vDisks have the same block
map, which is a metadata mapping of the vDisk to its corresponding extents. Contrary to
traditional approaches which require traversal of the snapshot chain (which can add read
latency), each vDisk has its own block map. This eliminates any of the overhead normally
seen by large snapshot chain depths and allows you to take continuous snapshots without
any performance impact.

The following fi gure shows an example of how this works when a snapshot is taken
(NOTE: I need to give some credit to NTAP as a base for these diagrams, as I thought their
representation was the clearest):

Figure 3.2-32. Example Snapshot Block Map

The same method applies when a snapshot or clone of a previously snapped or cloned vDisk
is performed:

Figure 3.2-33. Multi-snap Block Map and New Write

For a video explanation
you can watch the
following video:

ttps://www.youtube.com/watch?v=
uK5wWR44UYE&feature=youtu.be

89

The same methods are used for both snapshots and/or clones of a VM or vDisk(s). When
a VM or vDisk is cloned, the current block map is locked and the clones are created. These
updates are metadata only, so no I/O actually takes place. The same method applies for
clones of clones; essentially the previously cloned VM acts as the “Base vDisk” and upon
cloning, that block map is locked and two “clones” are created: one for the VM being cloned
and another for the new clone.

They both inherit the prior block map and any new writes/updates would take place on their
individual block maps.

Figure 3.2-34. Multi-Clone Block Maps

As mentioned previously, each VM/vDisk has its own individual block map. So in the above
example, all of the clones from the base VM would now own their block map and any write/
update would occur there.

The following figure shows an example of what this looks like:

Figure 3.2-35. Clone Block Maps - New Write

Any subsequent clones or snapshots of a VM/vDisk would cause the original block map to
be locked and would create a new one for R/W access.

Book of Acropolis

90

The Nutanix Bible

3.2.11 Networking and I/O

The Nutanix platform does not leverage any backplane
for inter-node communication and only relies on a
standard 10GbE network. All storage I/O for VMs
running on a Nutanix node is handled by the hypervisor
on a dedicated private network. The I/O request will
be handled by the hypervisor, which will then forward
the request to the private IP on the local CVM. The
CVM will then perform the remote replication with
other Nutanix nodes using its external IP over the
public 10GbE network. For all read requests, these will
be served completely locally in most cases and never
touch the 10GbE network. This means that the only
traffi c touching the public 10GbE network will be DSF
remote replication traffi c and VM network I/O. There will,
however, be cases where the CVM will forward requests
to other CVMs in the cluster in the case of a CVM being
down or data being remote. Also, cluster-wide tasks, such as disk balancing, will temporarily
generate I/O on the 10GbE network.

The following fi gure shows an example of how the VM’s I/O path interacts with the private
and public 10GbE network:

Figure 3.2-54. DSF Networking

3.2.12 Data Locality

Being a converged (compute+storage) platform,
I/O and data locality are critical to cluster and VM
performance with Nutanix. As explained above in the
I/O path, all read/write IOs are served by the local
Controller VM (CVM) which is on each hypervisor
adjacent to normal VMs. A VM’s data is served
locally from the CVM and sits on local disks under
the CVM’s control. When a VM is moved from one
hypervisor node to another (or during a HA event),
the newly migrated VM’s data will be served by the
now local CVM. When reading old data (stored on the
now remote node/CVM), the I/O will be forwarded by
the local CVM to the remote CVM. All write I/Os will

For a video explanation
you can watch the
following video:

https://www.youtube.com/watch?
v=Bz37Eu_TgxY&feature=youtu.be

For a video explanation
you can watch the
following video:

https://www.youtube.com/watch?v
=ocLD5nBbUTU&feature=youtu.be

91

occur locally right away. DSF will detect the I/Os are occurring from a diff erent node and
will migrate the data locally in the background, allowing for all read I/Os to now be served
locally. The data will only be migrated on a read as to not fl ood the network.
Data locality occurs in two main fl avors:
• Cache Locality
 vDisk data stored locally in the Unifi ed Cache. vDisk extent(s) may be
 remote to the node.
• Extent Locality
 vDisk extents local on the same node as the VM
The following fi gure shows an example of how data will “follow” the VM as it moves between
hypervisor nodes:

Figure 3.2-55. Data Locality

Thresholds for Data Migration

Cache locality occurs in real time and will be determined based upon vDisk ownership.
When a vDisk / VM moves from one node to another the “ownership” of those vDisk(s)
will transfer to the now local CVM. Once the ownership has transferred the data can be
cached locally in the Unifi ed Cache. In the interim the cache will be wherever the ownership
is held (the now remote host). The previously hosting Stargate will relinquish the vDisk
token when it sees remote I/Os for 300+ seconds at which it will then be taken by the local
Stargate. Cache coherence is enforced as ownership is required to cache the vDisk data.
Extent locality is a sampled operation and an extent group will be migrated when the
following occurs: “3 touches for random or 10 touches for sequential within a 10 minute
window where multiple reads every 10 second sampling count as a single touch”.

3.2.13 Shadow Clones

The Acropolis Distributed Storage Fabric has a feature
called ‘Shadow Clones’, which allows for distributed
caching of particular vDisks or VM data which is in
a ‘multi-reader’ scenario. A great example of this is
during a VDI deployment many ‘linked clones’ will
be forwarding read requests to a central master or
‘Base VM’. In the case of VMware View, this is called
the replica disk and is read by all linked clones, and in
XenDesktop, this is called the MCS Master VM. This
will also work in any scenario which may be a multi-
reader scenario (e.g., deployment servers, repositories,
etc.). Data or I/O locality is critical for the highest
possible VM performance and a key struct of DSF.

Book of Acropolis

For a video explanation
you can watch the
following video:

https://www.youtube.com/watch?v
=oqfFDMYQFJg&feature=youtu.be

92

The Nutanix Bible

With Shadow Clones, DSF will monitor vDisk access trends similar to what it does for data
locality. However, in the case there are requests occurring from more than two remote CVMs
(as well as the local CVM), and all of the requests are read I/O, the vDisk will be marked as
immutable. Once the disk has been marked as immutable, the vDisk can then be cached
locally by each CVM making read requests to it (aka Shadow Clones of the base vDisk).
This will allow VMs on each node to read the Base VM’s vDisk locally. In the case of VDI, this
means the replica disk can be cached by each node and all read requests for the base will be
served locally. NOTE: The data will only be migrated on a read as to not flood the network
and allow for efficient cache utilization. In the case where the Base VM is modified, the
Shadow Clones will be dropped and the process will start over. Shadow clones are enabled
by default (as of 4.0.2) and can be enabled/disabled using the following NCLI command: ncli
cluster edit-params enable-shadow-clones=<true/false>.

The following figure shows an example of how Shadow Clones work and allow for
distributed caching:

Figure 3.2-56. Shadow Clones

3.2.14 Storage Layers and Monitoring

The Nutanix platform monitors storage at multiple layers throughout the stack, ranging from
the VM/Guest OS all the way down to the physical disk devices. Knowing the various tiers
and how these relate is important whenever monitoring the solution and allows you to get
full visibility of how the ops relate. The following figure shows the various layers of where
operations are monitored and the relative granularity which are explained below:

Figure 3.2-57. Storage Layers

93

 Virtual Machine Layer
• Key Role: Metrics reported by the hypervisor for the VM
• Description: Virtual Machine or guest level metrics are pulled directly from the

hypervisor and represent the performance the VM is seeing and is indicative of the I/O
performance the application is seeing.

• When to use: When troubleshooting or looking for VM level detail

Hypervisor Layer
• Key Role: Metrics reported by the Hypervisor(s)
• Description: Hypervisor level metrics are pulled directly from the hypervisor and

represent the most accurate metrics the hypervisor(s) are seeing. This data can be
viewed for one of more hypervisor node(s) or the aggregate cluster. This layer will
provide the most accurate data in terms of what performance the platform is seeing and
should be leveraged in most cases. In certain scenarios the hypervisor may combine or
split operations coming from VMs which can show the difference in metrics reported
by the VM and hypervisor. These numbers will also include cache hits served by the
Nutanix CVMs.

• When to use: Most common cases as this will provide the most detailed and valuable
metrics.

Controller Layer
• Key Role: Metrics reported by the Nutanix Controller(s)
• Description: Controller level metrics are pulled directly from the Nutanix Controller VMs

(e.g., Stargate 2009 page) and represent what the Nutanix front-end is seeing from
NFS/SMB/iSCSI or any back-end operations (e.g., ILM, disk balancing, etc.). This data
can be viewed for one of more Controller VM(s) or the aggregate cluster. The metrics
seen by the Controller Layer should normally match those seen by the hypervisor layer,
however will include any backend operations (e.g., ILM, disk balancing). These numbers
will also include cache hits served by memory. In certain cases, metrics like (IOPS),
might not match as the NFS / SMB / iSCSI client might split a large IO into multiple
smaller IOPS. However, metrics like bandwidth should match.

• When to use: Similar to the hypervisor layer, can be used to show how much backend
operation is taking place.

Disk Layer
• Key Role: Metrics reported by the Disk Device(s)
• Description: Disk level metrics are pulled directly from the physical disk devices (via the

CVM) and represent what the back-end is seeing. This includes data hitting the OpLog
or Extent Store where an I/O is performed on the disk. This data can be viewed for one
of more disk(s), the disk(s) for a particular node, or the aggregate disks in the cluster. In
common cases, it is expected that the disk ops should match the number of incoming
writes as well as reads not served from the memory portion of the cache. Any reads
being served by the memory portion of the cache will not be counted here as the op is
not hitting the disk device.

• When to use: When looking to see how many ops are served from cache or hitting the disksm

Metric and Stat Retention
Metrics and time series data is stored locally for 90 days in Prism Element. For Prism
Central and Insights, data can be stored indefinitely (assuming capacity is available).

Book of Acropolis

94

The Nutanix Bible

3.3 Services

3.3.1 Nutanix Guest Tools (NGT)
Nutanix Guest Tools (NGT) is a software based in-guest agent framework which enables
advanced VM management functionality through the Nutanix Platform.

The solution is composed of the NGT installer which is installed on the VMs and the Guest
Tools Framework which is used for coordination between the agent and Nutanix platform.

The NGT installer contains the following components:
• Guest Agent Service
• Self-service Restore (SSR) aka File-level Restore (FLR) CLI
• VM Mobility Drivers (VirtIO drivers for AHV)
• VSS Agent and Hardware Provider for Windows VMs
• App Consistent snapshot support for Linux VMs (via scripts to queisce)

This framework is composed of a few high-level components:

• Guest Tools Service
 Gateway between the Acropolis and Nutanix services and the Guest Agent.
 Distributed across CVMs within the cluster with an elected NGT Master which runs
 on the current Prism Leader (hosting cluster vIP)

• Guest Agent
 Agent and associated services deployed in the VM’s OS as part of the NGT
 installation process. Handles any local functions (e.g. VSS, Self-service Restore
 (SSR), etc.) and interacts with the Guest Tools Service.

The figure shows the high-level mapping of the components:

Figure 3.3.1. Guest Tools Mapping
Guest Tools Service

The Guest Tools Service is composed of two main roles:

• NGT Master
 Handles requests coming from NGT Proxy and interfaces with Acropolis
 components. A single NGT Master is dynamically elected per cluster; in the event the
 current master fails a new one will be elected. The service listens internally on port 2073.

95

Book of Acropolis

• NGT Proxy
 Runs on every CVM and will forward requests to the NGT Master to perform the
 desired activity. The current VM activing as the Prism Leader (hosting the VIP) will
 be the active CVM handling communication from the Guest Agent. Listens externally
 on port 2074.

Current NGT Master
You can find the IP of the CVM hosting the NGT Master role with the following
command (run on any CVM):

nutanix_guest_tools_cli get_master_location

The figure shows the high-level mapping of the roles:

Figure 3.3.2. Guest Tools Service
Guest Agent

The Guest Agent is composed of the following high-level components as mentioned prior:

Figure3.3.3. Guest Agent
Communication and Security

The Guest Agent Service communicates with Guest Tools Service via the Nutanix Cluster
IP using SSL. For deployments where the Nutanix cluster components and UVMs are on a
different network (hopefully all), ensure that the following are possible:

• Ensure routed communication from UVM network(s) to Cluster IP OR
OR
• Create a firewall rule (and associated NAT) from UVM network(s) allowing
 communication with the Cluster IP on port 2074 (preferred)

96

The Nutanix Bible

The Guest Tools Service acts as a Certifi cate Authority (CA) and is responsible for
generating certifi cate pairs for each NGT enabled UVM. This certifi cate is embedded in to
the ISO which is confi gured for the UVM and used as part of the NGT deployment process.
These certifi cates are installed inside the UVM as part of the installation process.

NGT Agent Installation

NGT Agent installation can be performed via Prism or CLI/Scripts (ncli/REST/PowerShell).
To install NGT via Prism, navigate to the ‘VM’ page, select a VM to install NGT on and click
‘Enable NGT’:

Figure3.3.4. Enable NGT for VM

Click ‘Yes’ at the prompt to continue with NGT installation:

Figure 3.3.5. Enable NGT Prompt

97

The VM must have a CD-ROM as the generated installer containing the software and unique
certifi cate will be mounted there as shown:

Figure 3.3.6. Enable NGT - CD-ROM

The NGT installer CD-ROM will be visible in the OS:

Figure3.3.7. Enable NGT - CD-ROM in OS

Double click on the CD to begin the installation process.
Follow the prompts and accept the licenses to complete the installation:

Figure3.3.8. Enable NGT - Installer

Book of Acropolis

98

The Nutanix Bible

As part of the installation process Python, PyWin and the Nutanix Mobility (cross-hypervisor
compatibility) drivers will also be installed.

After the installation has been completed, a reboot will be required.

After successful installation and reboot, you will see the following items visible in ‘Programs
and Features’:

Figure 3.3.9. Enable NGT - Installed Programs

Services for the NGT Agent and VSS Hardware Provider will also be running:

Figure. 3.3.10. Enabled NGT - Services

NGT is now installed and can be leveraged.

Bulk NGT Deployment
Rather than installing NGT on each individual VM, it is possible to embed and deploy
NGT in your base image.

Follow the following process to leverage NGT inside a base image:

1. Install NGT on master VM and ensure communication
2. Clone VMs from master VM
3. Mount NGT ISO on each clone (required to get new certifi cate pair)
 Example: ncli ngt mount vm-id=<CLONE_ID> OR via Prism
 Automated way coming soon :)
4. Power on clones
When the cloned VM is booted it will detect the new NGT ISO and copy relevant
confi guration fi les and new certifi cates and will start communicating with the Guest
Tools Service.

99

3.3.2 OS Customization

Nutanix provides native OS customization capabilities leveraging CloudInit and Sysprep.
CloudInit is a package which handles bootstrapping of Linux cloud servers. This allows for
the early initialization and customization of a Linux instance. Sysprep is a OS customization
for Windows.

Some typical uses include:
• Setting Hostname
• Installing packages
• Adding users / key management
• Custom scripts

Supported Configurations
The solution is applicable to Linux guests running on AHV, including versions below (list may
be incomplete, refer to documentation for a fully supported list):

• Hypervisors:
 AHV

• Operating Systems:
 Linux - most modern distributions
 Windows - most modern distributions

Pre-Requisites

In order for CloudInit to be used the following are necessary:
• CloudInit package must be installed in Linux image

Sysprep is available by default in Windows installations.

Package Installation

CloudInit can be installed (if not already) using the following commands:

Red Hat Based Systems (CentOS, RHEL)

 yum -y install CloudInit

Debian Based Systems (Ubuntu)

 apt-get -y update; apt-get -y install CloudInit

Sysprep is part of the base Windows installation.

Image Customization

To leverage a custom script for OS customization, a check box and inputs is available in
Prism or the REST API. This option is specified during the VM creation or cloning process:

Book of Acropolis

100

The Nutanix Bible

Figure 3.3.11. Custom Script - Input Options

Nutanix has a few options for specifying the custom script path:

• ADSF Path
 Use a fi le which has been previously upload to ADSF
• Upload a fi le
 Upload a fi le which will be used
• Type or paste script
 CloudInit script or Unattend.xml text

Nutanix passes the user data script to CloudInit or Sysprep process during fi rst boot by
creating a CD-ROM which contains the script. Once the process is complete we will remove
the CD-ROM.

Input formatting
The platform supports a good amount of user data input formats, I’ve identifi ed a few of the
key ones below:

User-Data Script (CloudInit - Linux)

A user-data script is a simple shell script that will be executed very late in the boot process
(e.g. “rc.local-like”).

The scripts will begin similar to any bash script: “#!”.

Below we show an example user-data script:

 #!/bin/bash
 touch /tmp/fooTest
 mkdir /tmp/barFolder

Include File (CloudInit - Linux)

101

The include file contains a list of urls (one per line). Each of the URLs will be read and they
will be processed similar to any other script.

The scripts will begin with: “#include”.

Below we show an example include script:

 =#include
 http://s3.amazonaws.com/path/to/script/1
 http://s3.amazonaws.com/path/to/script/2

Cloud Config Data (CloudInit - Linux)

The cloud-config input type is the most common and specific to CloudInit.

The scripts will begin with: “#cloud-init”.

Below we show an example cloud config data script:

#cloud-config

Set hostname
hostname: foobar

Add user(s)
users:
 - name: nutanix
 sudo: [‘ALL=(ALL) NOPASSWD:ALL’]
 ssh-authorized-keys:
 - ssh-rsa: <PUB KEY>
 lock-passwd: false
 passwd: <PASSWORD>

Automatically update all of the packages
package_upgrade: true
package_reboot_if_required: true

Install the LAMP stack
packages:
 - httpd
 - mariadb-server
 - php
 - php-pear
 - php-mysql

Run Commands after execution
runcmd:
 - systemctl enable httpd

Validating CloudInit Execution
CloudInit log files can be found in /var/log/cloud-init.log and cloud-init-output.log.

Book of Acropolis

102

The Nutanix Bible

Unattend.xml (Sysprep - Windows)

The unattend.xml file is the input file Sysprep uses for image customization on boot, you can
read more here: LINK

The scripts will begin with: “<?xml version=”1.0” ?>”.

Below we show an example unattend.xml file:

<?xml version=”1.0” ?>
<unattend xmlns=”urn:schemas-microsoft-com:unattend”>
 <settings pass=”windowsPE”>
 <component name=”Microsoft-Windows-Setup” publicKeyToken=”31bf3856ad364e35”
language=”neutral” versionScope=”nonSxS” processorArchitecture=”x86”>
 <WindowsDeploymentServices>
 <Login>
 <WillShowUI>OnError</WillShowUI>
 <Credentials>
 <Username>username</Username>
 <Domain>Fabrikam.com</Domain>
 <Password>my_password</Password>
 </Credentials>
 </Login>
 <ImageSelection>
 <WillShowUI>OnError</WillShowUI>
 <InstallImage>
 <ImageName>Windows Vista with Office</ImageName>
 <ImageGroup>ImageGroup1</ImageGroup>
 <Filename>Install.wim</Filename>
 </InstallImage>
 <InstallTo>
 <DiskID>0</DiskID>
 <PartitionID>1</PartitionID>
 </InstallTo>
 </ImageSelection>
 </WindowsDeploymentServices>
 <DiskConfiguration>
 <WillShowUI>OnError</WillShowUI>
 <Disk>
 <DiskID>0</DiskID>
 <WillWipeDisk>false</WillWipeDisk>
 <ModifyPartitions>
 <ModifyPartition>
 <Order>1</Order>
 <PartitionID>1</PartitionID>
 <Letter>C</Letter>
 <Label>TestOS</Label>
 <Format>NTFS</Format>
 <Active>true</Active>
 <Extend>false</Extend>

103

 </ModifyPartition>
 </ModifyPartitions>
 </Disk>
 </DiskConfiguration>
 </component>
 <component name=”Microsoft-Windows-International-Core-WinPE” publ
icKeyToken=”31bf3856ad364e35” language=”neutral” versionScope=”nonSxS”
processorArchitecture=”x86”>
 <SetupUILanguage>
 <WillShowUI>OnError</WillShowUI>
 <UILanguage>en-US</UILanguage>
 </SetupUILanguage>
 <UILanguage>en-US</UILanguage>
 </component>
 </settings>
</unattend>

3.3.3 Block Services

The Acropolis Block Services (ABS) feature exposes back-end DSF storage to external
consumers (guest OS, physical hosts, containers, etc.) via iSCSI.

This allows any operating system to access DSF and leverage its storage capabilities. In this
deployment scenario, the OS is talking directly to Nutanix bypassing any hypervisor.

Core use-cases for Acropolis Block Services:

• Shared Disks
 Oracle RAC, Microsoft Failover Clustering, etc.
• Disks as first-class entities
 Where execution contexts are ephemeral and data is critical
 Containers, OpenStack, etc.
• Guest-initiated iSCSI
 Bare-metal consumers
 Exchange on vSphere (for Microsoft Support)

Qualified Operating Systems

The solution is iSCSI spec compliant, the qualified operating systems are just those of which
have been validated by QA.

• Microsoft Windows Server 2008 R2, 2012 R2
• Redhat Enterprise Linux 6.0+

Block Services Constructs

The following entities compose Acropolis Block Services:

• Data Services IP: Cluster wide IP address used for iSCSI login requests (Introduced in 4.7)
• Volume Group: iSCSI target and group of disk devices allowing for centralized
 management, snapshotting, and policy application
• Disk(s): Storage devices in the Volume Group (seen as LUNs for the iSCSI target)
• Attachment: Allowing a specified initiator IQN access to the volume group
NOTE: On the backend, a VG’s disk is just a vDisk on DSF.

Book of Acropolis

104

The Nutanix Bible

Pre-Requisites

Before we get to confi guration, we need to confi gure the Data Services IP which will act as
our central discovery / login portal.

We’ll set this on the ‘Cluster Details’ page (Gear Icon -> Cluster Details):

Figure 3.3.12. Block Services - Data Services IP

This can also be set via NCLI / API:

ncli cluster edit-params external-data- services-ip-address=<DATA SERVICES IP ADDRESS>

Target Creation

To use Block Services, the fi rst thing we’ll do is create a ‘Volume Group’ which is the iSCSI
target.

From the ‘Storage’ page click on ‘+ Volume Group’ on the right hand corner:

Figure 3.3.13. Block Services - Add Volume Group

This will launch a menu where we’ll specify the VG details:

Figure 3.3.14. Block Services - Add VG Details

105

Next we’ll click on ‘+ Add new disk’ to add any disk(s) to the target (visible as LUNs):

A menu will appear allowing us to select the target container and size of the disk:

Figure 3.3.15. Block Services - Add Disk

Click ‘Add’ and repeat this for however many disks you’d like to add.

Once we’ve specifi ed the details and added disk(s) we’ll attach the Volume Group to a VM
or Initiator IQN. This will allow the VM to access the iSCSI target (requests from an unknown
initiator are rejected):

Figure 3.3.16. Block Services - Initiator IQN / VM

Click ‘Save’ and the Volume Group confi guration is complete!
This can all be done via ACLI / API as well:

Create VG

 vg.create <VG Name>

Add disk(s) to VG

Vg.disk_create <VG Name> container=<CTR Name> create_size=<Disk size, e.g. 500G>

Book of Acropolis

106

The Nutanix Bible

Attach initiator IQN to VG

 Vg.attach_external <VG Name> <Initiator IQN>

Path High-Availability (HA)

As mentioned previously, the Data Services IP is leveraged for discovery. This allows for
a single address that can be leveraged without the need of knowing individual CVM IP
addresses.

The Data Services IP will be assigned to the current iSCSI master. In the event that fails, a
new iSCSI master will become elected and assigned the Data Services IP. This ensures the
discovery portal will always remain available.

The iSCSI initiator is configured with the Data Services IP as the iSCSI target portal. Upon a
login request, the platform will perform an iSCSI login redirect to a healthy Stargate.

Figure 3.3.17. Block Services - Login Redirect
In the event where the active (affined) Stargate goes down, the initiator retries the iSCSI
login to the Data Services IP, which will then redirect to another healthy Stargate.

Figure 3.3.18. Block Services - Failure Handling
If the affined Stargate comes back up and is stable, the currently active Stargate will queisce
I/O and kill the active iSCSI session(s). When the initiator re-attempts the iSCSI login, the
Data Services IP will redirect it to the affined Stargate.

Figure 3.3.19. Block Services - Failback

107

Health Monitoring and Defaults
Stargate health is monitored using Zookeeper for Block Services, using the exact
same mechanism as DSF.

For failback, the default interval is 120 seconds. This means once the affi ned
Stargate is healthy for 2 or more minutes, we will queisce and close the session.
Forcing another login back to the affi ned Stargate.

Given this mechanism, client side multipathing (MPIO) is no longer necessary for path HA.
When connecting to a target, there’s now no need to check ‘Enable multi-path’ (which
enables MPIO):

Figure 3.3.20. Block Services - No MPIO

Multi-Pathing

The iSCSI protocol spec mandates a single iSCSI session (TCP connection) per target,
between initiator and target. This means there a 1:1 relationship between a Stargate and a
target.

As of 4.7, 32 (default) virtual targets will be automatically created per attached initiator and
assigned to each disk device added to the volume group (VG). This provides an iSCSI target
per disk device. Previously this would have been handled by creating multiple VGs with a
single disk each.

When looking at the VG details in ACLI/API you can see the 32 virtual targets created for
each attachment:

attachment_list {
 external_initiator_name: “iqn.1991-05.com.microsoft:desktop-foo”
 target_params {
 num_virtual_targets: 32
 }
 }

Here we’ve created a sample VG with 3 disks devices added to it. When performing a
discovery on my client I can see an individual target for each disk device (with a suffi x in the
format of ‘-tgt[int]’):

Book of Acropolis

108

The Nutanix Bible

Figure 3.3.21. Block Services - Virtual Target
This allows each disk device to have its own iSCSI session and the ability for these sessions
to be hosted across multiple Stargates, increasing scalability and performance:

Figure 3.3.22. Block Services - Multi-Path
Load balancing occurs during iSCSI session establishment (iSCSI login), for each target.

As of 4.7 a simple hash function is use to distribute targets across cluster nodes. We will
continue to look at the algorithm and optimize as necessary. It is also possible to set a
preferred node which will be used as long as it is in a healthy state.

SCSI UNMAP (TRIM)
Acropolis Block Services supports the SCSI UNMAP (TRIM) command in the SCSI
T10 specifi cation. This command is used to reclaim space from deleted blocks.

3.3.4 File Services

The File Services feature allows users to leverage the Nutanix platform as a highly available
fi le server. This allows for a single namespace where users can store home directories and
fi les.

109

This feature is composed of a few high-level constructs:

• File Server
 High-level namespace. Each file server will have its own set of File Services VMs
 (FSVM) which are deployed
• Share
 Share exposed to users. A file server can have multiple shares (e.g. departmental
 shares, etc.)
• Folder
 Folders for file storage. Folders are sharded across FSVMs

The figure shows the high-level mapping of the constructs:

Figure 3.3.22. File Services Mapping

The file services feature follows the same methodology for distribution as the Nutanix
platform to ensure availability and scale. A minimum of 3 FSVMs will be deployed as part of
the File Server deployment.

The figure shows a detailed view of the components:

Figure 3.3.23. File Services Detail

Book of Acropolis

110

The Nutanix Bible

Supported Protocols
As of 4.6, SMB (up to version 2.1) is the only supported protocol for client
communication with file services.

The File Services VMs run as agent VMs on the platform and are transparently deployed as
part of the configuration process.

The figure shows a detailed view of FSVMs on the Acropolis platform:

Figure 3.3.24. FSVM Deployment Arch

Authentication and Authorization

The File Services feature is fully integrated into Microsoft Active Directory (AD) and DNS.
This allows all of the secure and established authentication and authorization capabilities of
AD to be leveraged. All share permissions, user and group management is done using the
traditional Windows MMC for file management.

As part of the installation process the following AD / DNS objects will be created:

• AD Computer Account for File Server
• AD Service Principal Name (SPN) for File Server and each FSVM
• DNS entry for File Server pointing to all FSVM(s)
• DNS entry for each FSVM

AD Privileges for File Server Creation
A user account with the domain admin or equivalent privileges must be used to
deploy the File Service feature as AD and DNS objects are created.

High-Availability (HA)

Each FSVM leverages the Acropolis Volumes API for its data storage which is accessed via in-
guest iSCSI. This allows any FSVM to connect to any iSCSI target in the event of a FSVM outage.
The figure shows a high-level overview of the FSVM storage:

Figure 3.3.25. FSVM Storage

111

To provide for path availability DM-MPIO is leveraged within the FSVM which will have the
active path set to the local CVM by default:

Figure 3.3.26. FSVM MPIO
In the event where the local CVM becomes unavailable (e.g. active path down), DM-MPIO will
activate one of the failover paths to a remote CVM which will then takeover IO.

Figure 3.3.27. FSVM MPIO Failover
When the local CVM comes back and is healthy it will be marked as the active path to
provide for local IO.

In a normal operating environment each FSVM will be communicating with its own VG for
data storage with passive connections to the others. Each FSVM will have an IP which clients
use to communicate with the FSVM as part of the DFS referral process. Clients do not need
to know each individual FSVM’s IP as the DFS referral process will connect them to the
correct IP hosting their folder(s).

Figure 3.3.28. FSVM Normal Operation

Book of Acropolis

112

The Nutanix Bible

In the event of a FSVM “failure” (e.g. maintenance, power off, etc.) the VG and IP of the failed
FSVM will be taken over by another FSVM to ensure client availability.

The figure shows the transfer of the failed FSVM’s IP and VG:

Figure 3.3.29. FSVM Failure Scenario

When the failed FSVM comes back and is stable, it will re-take its IP and VG and continue to
serve client IO.

3.3.5 Container Services

Nutanix provides the ability to leverage persistent containers on the Nutanix platform using
Docker (currently). It was previously possible to run Docker on Nutanix platform; however,
data persistence was an issue given the ephemeral nature of containers.

Container technologies like Docker are a different approach to hardware virtualization. With
traditional virtualization each VM has its own Operating System (OS) but they share the
underlying hardware. Containers, which include the application and all its dependencies, run
as isolated processes that share the underlying Operating System (OS) kernel.

The following table shows a simple comparison between VMs and Containers:

Supported Configurations
The solution is applicable to the configurations below (list may be incomplete, refer to
documentation for a fully supported list):

Metric Virtual Machines (VM) Containers

Virtualization Type Hardware-level virtualization OS kernel virtualization

Overhead Heavyweight Lightweight

Provisioning Speed Slower (seconds to minutes) Real-time / fast (us to ms)

Performance Overhead Limited performance Native performance

Security Fully isolated (more secure) Process-level isolation (less
secure)

113

Hypervisor(s):
• AHV
Container System(s)*:
• Docker 1.11

*As of 4.7, the solution only supports storage integration with Docker based containers.
However, any other container system can run as a VM on the Nutanix platform.

Container Services Constructs

The following entities compose Acropolis Container Services:
• Nutanix Docker Host Image: Preconfigured and tested Docker host image provided by
 Nutanix and made available via the Nutanix Support Portal. This image is used by the
 Docker Machine driver for Docker host provisioning
• Nutanix Docker Machine Driver: Handles Docker container host provisioning via Docker
 Machine and the Acropolis Image Service
• Nutanix Docker Volume Driver: Responsible for interfacing with Acropolis Block
 Services to create, mount, format and attach volumes to the desired container

The following entities compose Docker (note: not all are required):

• Docker Image: The basis and image for a container
• Docker Registry: Holding space for Docker Images
• Docker Hub: Online container marketplace (public Docker Registry)
• Docker File: Text file describing how to construct the Docker image
• Docker Container: Running instantiation of a Docker Image
• Docker Engine: Creates, ships and runs Docker containers
• Docker Swarm: Docker host clustering / scheduling platform
• Docker Daemon: Handles requests from Docker Client and does heavy lifting of building,
 running and distributing containers

Architecture

The Nutanix solution currently leverages Docker Engine running in VMs which are created
using Docker Machine. These machines can run in conjunction with normal VMs on the
platform.

Figure 3.3.30. Docker - High-level Architecture
Nutanix has developed a Docker Volume Driver which will create, format and attach a
volume to container(s) using the Acropolis Block Services feature. This allows the data to
persist as a container is power cycled / moved.

Book of Acropolis

114

The Nutanix Bible

Data persistence is achieved by using the Nutanix Volume Driver which will leverage
Acropolis Block Services to attach a volume to the host / container:

Figure 3.3.31. Docker - Block Services
Pre-Requisites

In order for Container Services to be used the following are necessary:
• Nutanix cluster must be AOS 4.7 or later
• Nutanix Docker Host Image must be downloaded and exist as an image in the Acropolis
 Image Service
• The Nutanix Data Services IP must be configured
• Docker Toolbox must be installed on the client machine used for configuration
• Nutanix Docker Machine Driver must be in client’s PATH

Docker Host Creation

Assuming all pre-requisites have been met the first step is to provision the Nutanix Docker
Hosts using Docker Machine:

docker-machine -D create -d nutanix \
--nutanix-username <PRISM_USER> --nutanix-password <PRISM_PASSWORD> \
--nutanix-endpoint <CLUSTER_IP>:9440 --nutanix-vm-image <DOCKER_IMAGE_NAME> \
--nutanix-vm-network <NETWORK_NAME> \
--nutanix-vm-cores <NUM_CPU> --nutanix-vm-mem <MEM_MB> \ <DOCKER_HOST_NAME>

The following figure shows a high-level overview of the backend workflow:

Figure 3.3.32. Docker - Host Creation Workflow

115

The next step is to SSH into the newly provisioned Docker Host(s) via docker-machine ssh:

 docker-machine ssh <DOCKER_HOST_NAME>

Before we start the volume driver we’ll make sure we have the latest driver, to pull the latest
version run:

 docker pull orionapps/vol-plugin

Now that we have the latest version we’ll start the Nutanix Docker Volume Driver:

 ~/start-volume-plugin.sh

This will prompt you for the following details:

• Cluster IP
• Data Services IP
• Prism Username
• Prism Password
• Nutanix Storage Container Name

After that runs you should now see the container running the volume plugin:

 [root@DOCKER-NTNX-00 ~]# docker ps
 CONTAINER ID IMAGE ... NAMES
 37fba568078d orionapps/vol-plugin ... NutanixVolumePlugin

Docker Container Creation

Once the Nutanix Docker Host(s) have been deployed and the volume driver has been
started, you can now provision containers with persistent storage.

These are handled using the typical Docker run command structure and specifying the
Nutanix volume driver. Example usage below:

 docker run -d --name <CONTAINER_NAME> \
 -p <START_PORT:END_PORT> --volume-driver nutanix \
 -v <VOL_NAME:VOL_MOUNT_POINT> <DOCKER_IMAGE_NAME>
 Example: docker run -d --name postgresexample -p 5433:5433 --volume-driver
 nutanix -v PGDataVol:/var/lib/postgresql/data postgres:latest

The following figure shows a high-level overview of the backend workflow:

Figure 3.3.33. Docker - Container Creation Workflow
You now have a container running with persistent storage!

Book of Acropolis

116

The Nutanix Bible

3.4 Backup and Disaster Recovery
Nutanix provides native backup and disaster recovery (DR) capabilities allowing users to
backup, restore and DR VM(s) and objects running on DSF.

We will cover the following items in the following sections:

• Implementation Constructs
• Protecting Entities
• Backup and Restore
• Replication and DR

NOTE: Though Nutanix provides native options for backup and dr, traditional
solutions (e.g. Commvault, Rubrik, etc.) can also be used, leveraging some of the
native features the platform provides (VSS, snapshots, etc.).

3.4.1 Implementation Constructs

Within Nutanix Backup and DR, there are a few key constructs:

Protection Domain (PD)
• Key Role: Macro group of VMs and/or files to protect
• Description: A group of VMs and/or files to be replicated together on a desired
schedule. A PD can protect a full container or you can select individual VMs and/or files

Pro tip
Create multiple PDs for various services tiers driven by a desired RPO/RTO. For file
distribution (e.g. golden images, ISOs, etc.) you can create a PD with the files to replication.

Consistency Group (CG)
• Key Role: Subset of VMs/files in PD to be crash-consistent
• Description: VMs and/or files which are part of a Protection Domain which need to be
snapshotted in a crash-consistent manner. This ensures that when VMs/files are recovered,
they come up in a consistent state. A protection domain can have multiple consistency
groups.

Pro tip
Group dependent application or service VMs in a consistency group to ensure they
are recovered in a consistent state (e.g. App and DB)

Snapshot Schedule
• Key Role: Snapshot and replication schedule
• Description: Snapshot and replication schedule for VMs in a particular PD and CG

Pro tip
The snapshot schedule should be equal to your desired RPO

Retention Policy
• Key Role: Number of local and remote snapshots to keep
• Description: The retention policy defines the number of local and remote snapshots to
retain. NOTE: A remote site must be configured for a remote retention/replication policy to
be configured.

117

Pro tip
The retention policy should equal the number of restore points required per VM/fi le

Remote Site
• Key Role: A remote Nutanix cluster
• Description: A remote Nutanix cluster which can be leveraged as a target for backup or
DR purposes.

Pro tip
Ensure the target site has ample capacity (compute/storage) to handle a full site failure.
In certain cases replication/DR between racks within a single site can also make sense.

The following fi gure shows a logical representation of the relationship between a PD, CG,
and VM/Files for a single site:

Figure 3.4.1. DR Construct Mapping

3.4.2 Protecting Entities

You can protect Entities (VMs, VGs, Files), using the following workfl ow:

From the Data Protection page, select + Protection Domain -> Async DR:

Figure 3.4.2. DR - Async PD
Specify a PD name and click ‘Create’

Figure 3.4.3. DR - Create PD

Book of Acropolis

118

The Nutanix Bible

Select entities to protect:

Figure 3.4.4. DR - Async PD
Click ‘Protect Selected Entities’

Figure 3.4.5. DR - Protect Entities
The protect entities will now be displayed under ‘Protected Entities’

Figure 3.4.6. DR - Protected Entities

119

Click ‘Next’, then click ‘Next Schedule’ to create a snapshot and replication schedule
Enter the desired snapshot frequency, retention and any remote sites for replication

Figure 3.4.7. DR - Create Schedule
Click ‘Create Schedule’ to complete the schedule completion.

Multiple Schedules
It is possible to create multiple snapshot / replication schedules. For example, if you
want to have a local backup schedule occurring hourly and another schedule which
replicated to a remote site daily.

It’s important to mention that a full container can be protected for simplicity. However, the
platform provides the ability to protect down to the granularity of a single VM and/or fi le
level.

3.4.3 Backup and Restore
Nutanix backup capabilities leverage the native DSF snapshot capabilities and are invoked
by Cerebro and performed by Stargate. These snapshot capabilities are zero copy to ensure
effi cient storage utilization and low overhead. You can read more on Nutanix snapshots in
the ‘Snapshots and Clones’ section.

Typical backup and restore operations include:

• Snapshot: Create a restore point and replicate (if necessary)
• Restore: Restore VM(s) / File(s) from a previous snapshot (replaces original objects)
• Clone: Similar to restore but does not replace original objects (creates new objects as
desired snapshot)

From the Data Protection Page, you can see the protection domains (PD) previously created
in the ‘Protecting Entities’ section.

Book of Acropolis

120

The Nutanix Bible

Figure 3.4.8. DR - View PDs
Once you’re selected a target PD you can see the various options:

Figure 3.4.9. DR - PD Actions
If you click ‘Take Snapshot’ you can take an ad-hoc snapshot of the selected PD and
replicate to a remote site if necessary:

Figure 3.4.10. DR - Take Snapshot
You can also ‘Migrate’ the PD which will fail over the entities to a remote site:

Figure 3.4.11. DR - Migrate
You can also view the PD snapshot(s) in the table below:

121

Figure 3.4.12. DR - Local Snapshots
From here you can restore or clone a PD snapshot:

Figure 3.4.13. DR - Restore Snapshot
If you choose to ‘Create new entities’ that will be like cloning the snapshot of the PD to new
entities with the desired prefi xes. Otherwise ‘Overwrite existing entities’ will replace the
current entities with those at the time of the snapshot.

Storage only backup target
For backup / archival only purposes, it is possible to confi gure a storage only
Nutanix cluster as a remote site which will act as a backup target. This will allow
data to be replicated to / from the storage only cluster.

3.4.4 App Consistent Snapshots
Nutanix provides native VmQueisced Snapshot Service (VSS) capabilities for queiscing OS
and application operations which ensure an application consistent snapshot is achieved.

VmQueisced Snapshot Service (VSS)
VSS is typically a Windows specifi c term for Volume Shadow Copy Service. However,
since this solution applies to both Windows and Linux we’ve modifi ed the term to
VmQueisced Snapshot Service.

Supported Confi gurations
The solution is applicable to both Windows and Linux guests, including versions below (list
may be incomplete, refer to documentation for a fully supported list):

Book of Acropolis

122

The Nutanix Bible

• Hypervisors:
 ESX
 AHV
• Windows
 2008R2, 2012, 2012R2
• Linux
 CentOS 6.5/7.0
 RHEL 6.5/7.0
 OEL 6.5/7.0
 Ubuntu 14.04+
 SLES11SP3+

Pre-Requisites

In order for Nutanix VSS snapshots to be used the following are necessary:
• Nutanix Platform
 Cluster Virtual IP (VIP) must be configured
• Guest OS / UVM
 NGT must be installed
 CVM VIP must be reachable on port 2074
• Disaster Recovery Configuration
 UVM must be in PD with ‘Use application consistent snapshots’ enabled

Architecture
As of 4.6 this is achieved using the native Nutanix Hardware VSS provider which is installed
as part of the Nutanix Guest Tools package. You can read more on the guest tools in the
‘Nutanix Guest Tools’ section.
The following image shows a high-level view of the VSS architecture:

You can perform an application consistent snapshot by following the normal data protection
workflow and selecting ‘Use application consistent snapshots’ when protecting the VM.

Enabling/Disabling Nutanix VSS
When NGT is enabled for a UVM, the Nutanix VSS snapshot capability is enabled by
default. However, you can turn off this capability with the following command:

ncli ngt disable-applications application-names=vss_snapshot vm_id=<VM_ID>

123

Windows VSS Architecture
The Nutanix VSS solution is integrated with the Windows VSS framework. The following
shows a high-level view of the architecture:

Figure 3.4.15. Nutanix VSS - Windows Architecture
Once NGT is installed you can see the NGT Agent and VSS Hardware Provider services:

Figure 3.4.16. VSS Hardware Provider

Linux VSS Architecture
The Linux solution works similar to the Windows solution, however scripts are leveraged
instead of the Microsoft VSS framework as it doesn’t exist in Linux distros.

The Nutanix VSS solution is integrated with the Windows VSS framework. The following
shows a high-level view of the architecture:

Figure 3.4.17. Nutanix VSS - Linux Architecture

Book of Acropolis

124

The Nutanix Bible

The pre-freeze and post-thaw scripts are located in the following directories:

• Pre-freeze: /sbin/pre_freeze
• Post-thaw: /sbin/post-thaw

Eliminating ESXi Stun
ESXi has native app consistent snapshot support using VMware guest tools. However,
during this process, delta disks are created and ESXi “stuns” the VM in order to remap
the virtual disks to the new delta fi les which will handle the new write IO. Stuns will
also occur when a VMware snapshot is deleted.

During this stun process the VM its OS cannot execute any operations and is essentially
in a “stuck” state (e.g. pings will fail, no IO). The duration of the stun will depend on
the number of vmdks and speed of datastore metadata operations (e.g. create new
delta disks, etc.)

By using Nutanix VSS we completely bypass the VMware snapshot / stun process and
have little to no impact to performance or VM / OS availability.

3.4.5 Replication and Disaster Recovery (DR)

Nutanix provides native DR and replication capabilities,
which build upon the same features explained in the
Snapshots & Clones section. Cerebro is the component
responsible for managing the DR and replication in
DSF. Cerebro runs on every node and a Cerebro master
is elected (similar to NFS master) and is responsible
for managing replication tasks. In the event the CVM
acting as Cerebro master fails, another is elected and
assumes the role. The Cerebro page can be found on
<CVM IP>:2020. The DR function can be broken down
into a few key focus areas:
• Replication Topologies
• Replication Lifecycle
• Global Deduplication

Replication Topologies
Traditionally, there are a few key replication topologies: Site to site, hub and spoke, and full
and/or partial mesh. Contrary to traditional solutions which only allow for site to site or hub
and spoke, Nutanix provides a fully mesh or fl exible many-to-many model.

Figure 3.4.18. Example Replication Topologies

For a video explanation
you can watch the
following video:

https://www.youtube.com/watch?v
=AoKwKI7CXIM&feature=youtu.be

125

Essentially, this allows the admin to determine a replication capability that meets their
company’s needs.

Replication Lifecycle

Nutanix replication leverages the Cerebro service mentioned above. The Cerebro service
is broken into a “Cerebro Master”, which is a dynamically elected CVM, and Cerebro Slaves,
which run on every CVM. In the event where the CVM acting as the “Cerebro Master” fails, a
new “Master” is elected.

The Cerebro Master is responsible for managing task delegation to the local Cerebro Slaves
as well as coordinating with remote Cerebro Master(s) when remote replication is occurring.

During a replication, the Cerebro Master will figure out which data needs to be replicated,
and delegate the replication tasks to the Cerebro Slaves which will then tell Stargate which
data to replicate and to where.

Replicated data is protected at multiple layers throughout the process. Extent reads on the
source are checksummed to ensure consistency for source data (similar to how any DSF
read occurs) and the new extent(s) are checksummed at the target (similar to any DSF
write). TCP provides consistency on the network layer.

The following figure shows a representation of this architecture:

Figure 3.4.19. Replication Architecture
It is also possible to configure a remote site with a proxy which will be used as a bridgehead
for all coordination and replication traffic coming from a cluster.

Pro tip
When using a remote site configured with a proxy, always utilize the cluster IP as
that will always be hosted by the Prism Leader and available, even if CVM(s) go
down.

Book of Acropolis

126

The Nutanix Bible

The following figure shows a representation of the replication architecture using a proxy:

Figure 3.4.20. Replication Architecture - Proxy
In certain scenarios, it is also possible to configure a remote site using a SSH tunnel where all
traffic will flow between two CVMs.

Note
This should only be used for non-production scenarios and the cluster IPs should be
used to ensure availability.

The following figure shows a representation of the replication architecture using a SSH
tunnel:

Figure 3.4.21. Replication Architecture - SSH Tunnel
Global Deduplication
As explained in the Elastic Deduplication Engine section above, DSF has the ability to
deduplicate data by just updating metadata pointers. The same concept is applied to the DR
and replication feature. Before sending data over the wire, DSF will query the remote site
and check whether or not the fingerprint(s) already exist on the target (meaning the data
already exists). If so, no data will be shipped over the wire and only a metadata update will
occur. For data which doesn’t exist on the target, the data will be compressed and sent to
the target site. At this point, the data exists on both sites is usable for deduplication.

127

The following figure shows an example three site deployment where each site contains one
of more protection domains (PD):

Figure 3.4.22. Replication Deduplication

Note
Fingerprinting must be enabled on the source and target container / vstore for
replication deduplication to occur.

3.4.6 Cloud Connect

Building upon the native DR / replication capabilities of DSF, Cloud Connect extends this
capability into cloud providers (currently Amazon Web Services, Microsoft Azure). NOTE:
This feature is currently limited to just backup / replication.

Very similar to creating a remote site to be used for native DR / replication, a “cloud remote
site” is just created. When a new cloud remote site is created, Nutanix will automatically
spin up a single node Nutanix cluster in EC2 (currently m1.xlarge) or Azure Virtual Machines
(currently D3) to be used as the endpoint.

The cloud instance is based upon the same Acropolis code-base leveraged for locally
running clusters. This means that all of the native replication capabilities (e.g., global
deduplication, delta based replications, etc.) can be leveraged.

In the case where multiple Nutanix clusters are leveraging Cloud Connect, they can either A)
share the same instance running in the region, or B) spin up a new instance.

Storage for cloud instances is done using a “cloud disk” which is a logical disk backed by
S3 (AWS) or BlobStore (Azure). Data is stored as the usual egroups which are files on the
object stores.

The following figure shows a logical representation of a “remote site” used for Cloud Connect:

Figure 3.4.23. Cloud Connect Region

Book of Acropolis

128

The Nutanix Bible

Since a cloud based remote site is similar to any other Nutanix remote site, a cluster can
replicate to multiple regions if higher availability is required (e.g., data availability in the case
of a full region outage):

Figure 3.4.24. Cloud Connect Multi-region

The same replication / retention policies are leveraged for data replicated using Cloud
Connect. As data / snapshots become stale, or expire, the cloud cluster will clean up data as
necessary.

If replication isn’t frequently occurring (e.g., daily or weekly), the platform can be configured
to power up the cloud instance(s) prior to a scheduled replication and down after a
replication has completed.

Data that is replicated to any cloud region can also be pulled down and restored to any
existing, or newly created Nutanix cluster which has the cloud remote site(s) configured:

Figure 3.4.25. Cloud Connect - Restore

3.4.7 Metro Availability
Nutanix provides native “stretch clustering” capabilities which allow for a compute and
storage cluster to span multiple physical sites. In these deployments, the compute cluster
spans two locations and has access to a shared pool of storage.

129

This expands the VM HA domain from a single site to between two sites providing a near 0
RTO and a RPO of 0.

In this deployment, each site has its own Nutanix cluster, however the containers are
“stretched” by synchronously replicating to the remote site before acknowledging writes.

The following figure shows a high-level design of what this architecture looks like:

Figure 3.4.26. Metro Availability - Normal State
In the event of a site failure, an HA event will occur where the VMs can be restarted on the
other site.

The following figure shows an example site failure:

Figure 3.4.27. Metro Availability - Site Failure
In the event where there is a link failure between the two sites, each cluster will operate
independently. Once the link comes back up, the sites will be re-synchronized (deltas-only)
and synchronous replication will start occurring.

The following figure shows an example link failure:

Figure 3.4.28. Metro Availability - Link Failure

Book of Acropolis

130

The Nutanix Bible

3.5 Application Mobility Fabric - coming soon!
More coming soon!

3.6 Administration

3.6.1 Important Pages

These are advanced Nutanix pages besides the standard user interface that allow
you to monitor detailed stats and metrics. The URLs are formatted in the following
way: http://<Nutanix CVM IP/DNS>:<Port/path (mentioned below)> Example: http://
MyCVM-A:2009 NOTE: if you’re on a different subnet IPtables will need to be disabled on
the CVM to access the pages.

2009 Page
This is a Stargate page used to monitor the back end storage system and should only be
used by advanced users. I’ll have a post that explains the 2009 pages and things to look for.

2009/latency Page
This is a Stargate page used to monitor the back end latency.

2009/vdisk_stats Page
This is a Stargate page used to show various vDisk stats including histograms of I/O sizes,
latency, write hits (e.g., OpLog, eStore), read hits (cache, SSD, HDD, etc.) and more.

2009/h/traces Page
This is the Stargate page used to monitor activity traces for operations.

2009/h/vars Page
This is the Stargate page used to monitor various counters.

2010 Page
This is the Curator page which is used for monitoring Curator runs.

2010/master/control Page
This is the Curator control page which is used to manually start Curator jobs

2011 Page
This is the Chronos page which monitors jobs and tasks scheduled by Curator.

2020 Page
This is the Cerebro page which monitors the protection domains, replication status and DR.

131

2020/h/traces Page
This is the Cerebro page used to monitor activity traces for PD operations and replication.

2030 Page
This is the main Acropolis page and shows details about the environment hosts, any
currently running tasks and networking details..

2030/sched Page
This is an Acropolis page used to show information about VM and resource scheduling used
for placement decisions. This page shows the available host resources and VMs running on
each host.

2030/tasks Page
This is an Acropolis page used to show information about Acropolis tasks and their state.
You can click on the task UUID to get detailed JSON about the task.

2030/vms Page
This is an Acropolis page used to show information about Acropolis VMs and details about
them. You can click on the VM Name to connect to the console.

3.6.2 Cluster Commands

Check cluster status

Description: Check cluster status from the CLI

 cluster status

Check local CVM service status

Description: Check a single CVM’s service status from the CLI

 genesis status

Nutanix cluster upgrade

Description: Perform rolling (aka “live”) cluster upgrade from the CLI

Upload upgrade package to ~/tmp/ on one CVM

Untar package

 tar xzvf ~/tmp/nutanix*

Perform upgrade

 ~/tmp/install/bin/cluster -i ~/tmp/install upgrade

Check status

 upgrade_status

Book of Acropolis

132

The Nutanix Bible

Node(s) upgrade

Description: Perform upgrade of specified node(s) to current clusters version

From any CVM running the desired version run the following command:

 cluster -u <NODE_IP(s)> upgrade_node

Hypervisor upgrade status

Description: Check hypervisor upgrade status from the CLI on any CVM

 host_upgrade --status

Detailed logs (on every CVM)

 ~/data/logs/host_upgrade.out

Restart cluster service from CLI

Description: Restart a single cluster service from the CLI

Stop service

 cluster stop <Service Name>

Start stopped services

 cluster start #NOTE: This will start all stopped services

Start cluster service from CLI

Description: Start stopped cluster services from the CLI

Start stopped services

 cluster start #NOTE: This will start all stopped services

OR

Start single service

 Start single service: cluster start <Service Name>

Restart local service from CLI

Description: Restart a single cluster service from the CLI

Stop Service

 genesis stop <Service Name>

Start Service

 cluster start

Start local service from CLI

Description: Start stopped cluster services from the CLI

 cluster start #NOTE: This will start all stopped services

133

Cluster add node from cmdline

Description: Perform cluster add-node from CLI

 ncli cluster discover-nodes | egrep “Uuid” | awk ‘{print $4}’ | xargs -I
 UUID ncli cluster add-node node-uuid=UUID

Find cluster id

Description: Find the cluster ID for the current cluster

 zeus_config_printer | grep cluster_id

Open port

Description: Enable port through IPtables

 sudo vi /etc/sysconfig/iptables
 -A INPUT -m state --state NEW -m tcp -p tcp --dport <PORT> -j ACCEPT
 sudo service iptables restart

Check for Shadow Clones

Description: Displays the shadow clones in the following format: name#id@svm_id

 vdisk_config_printer | grep ‘#’

Reset Latency Page Stats

Description: Reset the Latency Page (<CVM IP>:2009/latency) counters

 allssh “wget 127.0.0.1:2009/latency/reset”

Find vDisk information

Description: Find vDisk information and details including name, id, size, iqn and others

vdisk_config_printer

Find Number of vDisks

Description: Find the current number of vDisks (files) on DSF

 vdisk_config_printer | grep vdisk_id | wc -l

Get detailed vDisk information

Description: Displays a provided vDisks egroup IDs, size, transformation and savings, gar-
bage and replica placement

 vdisk_usage_printer -vdisk_id=<VDISK_ID>

Start Curator scan from CLI
Description: Starts a Curator full scan from the CLI

 # Full Scan
 allssh “wget -O - “http://localhost:2010/master/api/client/
 StartCuratorTasks?task_type=2”;”

Book of Acropolis

134

The Nutanix Bible

 # Partial Scan
 allssh “wget -O - “http://localhost:2010/master/api/client/
 StartCuratorTasks?task_type=3”;”

 # Refresh Usage
 allssh “wget -O - “http://localhost:2010/master/api/client/RefreshStats”;”

Check under replicated data via CLI
Description: Check for under replicated data using curator_cli

 curator_cli get_under_replication_info summary=true

Compact ring

Description: Compact the metadata ring

 allssh “nodetool -h localhost compact”

Find NOS version

Description: Find the NOS version (NOTE: can also be done using NCLI)

 allssh “cat /etc/nutanix/release_version”

Find CVM version

Description: Find the CVM image version

 allssh “cat /etc/nutanix/svm-version”

Manually fingerprint vDisk(s)

Description: Create fingerprints for a particular vDisk (For dedupe) NOTE: dedupe must be
enabled on the container

 vdisk_manipulator –vdisk_id=<vDisk ID> --operation=add_fingerprints

Echo Factory_Config.json for all cluster nodes

Description: Echos the factory_config.jscon for all nodes in the cluster

 allssh “cat /etc/nutanix/factory_config.json”

Upgrade a single Nutanix node’s NOS version

Description: Upgrade a single node’s NOS version to match that of the cluster

 ~/cluster/bin/cluster -u <NEW_NODE_IP> upgrade_node

List files (vDisk) on DSF

Description: List files and associated information for vDisks stored on DSF

 Nfs_ls

Get help text

 Nfs_ls --help

135

Install Nutanix Cluster Check (NCC)

Description: Installs the Nutanix Cluster Check (NCC) health script to test for potential issues
and cluster health

Download NCC from the Nutanix Support Portal (portal.nutanix.com)

SCP .tar.gz to the /home/nutanix directory

Untar NCC .tar.gz

 tar xzmf <ncc .tar.gz file name> --recursive-unlink

Run install script

 ./ncc/bin/install.sh -f <ncc .tar.gz file name>

Create links

 source ~/ncc/ncc_completion.bash
 echo “source ~/ncc/ncc_completion.bash” >> ~/.bashrc

Run Nutanix Cluster Check (NCC)

Description: Runs the Nutanix Cluster Check (NCC) health script to test for potential issues
and cluster health. This is a great first step when troubleshooting any cluster issues.

Make sure NCC is installed (steps above)

Run NCC health checks

 ncc health_checks run_all

List tasks using progress monitor cli

 progress_monitor_cli -fetchall

Remove task using progress monitor cli

 progress_monitor_cli --entity_id=<ENTITY_ID> --operation=<OPERATION>
 --entity_type=<ENTITY_TYPE> --delete
 # NOTE: operation and entity_type should be all lowercase with k removed
 from the begining

3.6.3 Metrics and Thresholds

The following section will cover specific metrics and thresholds on the Nutanix back end.
More updates to these coming shortly!

3.6.4 Gflags

More coming soon!

3.6.5 Troubleshooting & Advanced Administration

Find Acropolis logs

Description: Find Acropolis logs for the cluster

 allssh “cat ~/data/logs/Acropolis.log”

Book of Acropolis

136

The Nutanix Bible

Find cluster error logs

Description: Find ERROR logs for the cluster

 allssh “cat ~/data/logs/<COMPONENT NAME or *>.ERROR”

Example for Stargate

 allssh “cat ~/data/logs/Stargate.ERROR”

Find cluster fatal logs

Description: Find FATAL logs for the cluster

 allssh “cat ~/data/logs/<COMPONENT NAME or *>.FATAL”

Example for Stargate

 allssh “cat ~/data/logs/Stargate.FATAL”

3.6.5.1 Using the 2009 Page (Stargate)

In most cases Prism should be able to give you all of the information and data points you
require. However, in certain scenarios, or if you want some more detailed data you can
leverage the Stargate aka 2009 page. The 2009 page can be viewed by navigating to <CVM
IP>:2009.

Accessing back-end pages
If you’re on a different network segment (L2 subnet) you’ll need to add a rule in IP
tables to access any of the back-end pages.

At the top of the page is the overview details which show various details about the cluster:

Figure 3.6.1. 2009 Page - Stargate Overview

137

In this section there are two key areas I look out for, the first being the I/O queues which
shows the number of admitted / outstanding operations.

The figure shows the queues portion of the overview section:

Figure 3.6.2. 2009 Page - Stargate Overview - Queues

The second portion is the content cache details which shows information on cache sizes and
hit rates.

The figure shows the content cache portion of the overview section:

Figure 3.6.3. 2009 Page - Stargate Overview - Content Cache

Pro tip
In ideal cases the hit rates should be above 80-90%+ if the workload is read heavy
for the best possible read performance.

NOTE: these values are per Stargate / CVM

The next section is the ‘Cluster State’ which shows details on the various Stargates in the
cluster and their disk usages.

The figure shows the Stargates and disk utilization (available/total):

Figure 3.6.4. 2009 Page - Cluster State - Disk Usage

The next section is the ‘NFS Slave’ section which will show various details and stats per
vDisk.

The figure shows the vDisks and various I/O details:

Book of Acropolis

138

The Nutanix Bible

Figure 3.6.5. 2009 Page - NFS Slave - vDisk Stats

Pro tip
When looking at any potential performance issues I always look at the following:

 1- Avg. latency
 2- Avg. op size
 3- Avg. outstanding

For more specific details the vdisk_stats page holds a plethora of information.

3.6.5.2 Using the 2009/vdisk_stats Page
The 2009 vdisk_stats page is a detailed page which provides even further data points
per vDisk. This page includes details and a histogram of items like randomness, latency
histograms, I/O sizes and working set details.

You can navigate to the vdisk_stats page by clicking on the ‘vDisk Id’ in the left hand column.

The figure shows the section and hyperlinked vDisk Id:

Figure 3.6.6. 2009 Page - Hosted vDisks

This will bring you to the vdisk_stats page which will give you the detailed vDisk stats.
NOTE: Theses values are real-time and can be updated by refreshing the page.

The first key area is the ‘Ops and Randomness’ section which will show a breakdown of
whether the I/O patterns are random or sequential in nature.

The figure shows the ‘Ops and Randomness’ section:

Figure 3.6.7. 2009 Page - vDisk Stats - Ops and Randomness

139

The next area shows a histogram of the frontend read and write I/O latency (aka the latency
the VM / OS sees).

The figure shows the ‘Frontend Read Latency’ histogram:

Figure 3.6.8. 2009 Page - vDisk Stats - Frontend Read Latency
The figure shows the ‘Frontend Write Latency’ histogram:

Figure 3.6.9. 2009 Page - vDisk Stats - Frontend Write Latency

The next key area is the I/O size distribution which shows a histogram of the read and write
I/O sizes.

The figure shows the ‘Read Size Distribution’ histogram:

Figure 3.6.10. 2009 Page - vDisk Stats - Read I/O Size

The figure shows the ‘Write Size Distribution’ histogram:

Figure 3.6.11. 2009 Page - vDisk Stats - Write I/O Size

Book of Acropolis

140

The Nutanix Bible

The next key area is the ‘Working Set Size’ section which provides insight on working set
sizes for the last 2 minutes and 1 hour. This is broken down for both read and write I/O.

The figure shows the ‘Working Set Sizes’ table:

Figure 3.6.12. 2009 Page - vDisk Stats - Working Set

The ‘Read Source’ provides details on which tier or location the read I/O are being served
from.

The figure shows the ‘Read Source’ details:

Figure 3.6.13. 2009 Page - vDisk Stats - Read Source

Pro tip
If you’re seeing high read latency take a look at the read source for the vDisk and take
a look where the I/Os are being served from. In most cases high latency could be
caused by reads coming from HDD (Estore HDD).

141

The ‘Write Destination’ section will show where the new write I/O are coming in to.

The figure shows the ‘Write Destination’ table:

Figure 3.6.14. 2009 Page - vDisk Stats - Write Destination

Pro tip
Random or smaller I/Os (<64K) will be written to the Oplog. Larger or sequential I/Os
will bypass the Oplog and be directly written to the Extent Store (Estore).

Another interesting data point is what data is being up-migrated from HDD to SSD via ILM.
The ‘Extent Group Up-Migration’ table shows data that has been up-migrated in the last 300,
3,600 and 86,400 seconds.

The figure shows the ‘Extent Group Up-Migration’ table:

Figure 3.6.15. 2009 Page - vDisk Stats - Extent Group Up-Migration

3.5.5.3 Using the 2010 Page (Curator)

The 2010 page is a detailed page for monitoring the Curator MapReduce framework. This
page provides details on jobs, scans, and associated tasks.

You can navigate to the Curator page by navigating to http://<CVM IP>:2010. NOTE: if
you’re not on the Curator Master click on the IP hyperlink after ‘Curator Master: ‘.

The top of the page will show various details about the Curator Master including uptime,
build version, etc.

The next section is the ‘Curator Nodes’ table which shows various details about the nodes
in the cluster, the roles, and health status. These will be the nodes Curator leverages for the
distributed processing and delegation of tasks.

Book of Acropolis

142

The Nutanix Bible

The figure shows the ‘Curator Nodes’ table:

Figure 3.5.16. 2010 Page - Curator Nodes

The next section is the ‘Curator Jobs’ table which shows the completed or currently running jobs.

There are two main types of jobs which include a partial scan which is eligible to run every
60 minutes and a full scan which is eligible to run every 6 hours. NOTE: the timing will be
variable based upon utilization and other activities.

These scans will run on their periodic schedules however can also be triggered by certain cluster events.

Here are some of the reasons for a jobs execution:
• Periodic (normal state)
• Disk / Node / Block failure
• ILM Imbalance
• Disk / Tier Imbalance

The figure shows the ‘Curator Jobs’ table:

Figure 3.6.17. 2010 Page - Curator Jobs

The table shows some of the high-level activities performed by each job:

Activity Full Scan Partial Scan

ILM X X

Disk Balancing X X

Compression X X

Deduplication X

Erasure Coding X

Garbage Cleanup X

143

Clicking on the ‘Execution id’ will bring you to the job details page which displays various
job stats as well as generated tasks.

The table at the top of the page will show various details on the job including the type,
reason, tasks and duration.

The next section is the ‘Background Task Stats’ table which displays various details on the
type of tasks, quantity generated and priority.

The figure shows the job details table:

Figure 3.6.18. 2010 Page - Curator Job - Details

The figure shows the ‘Background Task Stats’ table:

Figure 3.6.19. 2010 Page - Curator Job - Tasks

The next section is the ‘MapReduce Jobs’ table which shows the actual MapReduce jobs
started by each Curator job. Partial scans will have a single MapReduce Job, full scans will
have four MapReduce Jobs.

Book of Acropolis

144

The Nutanix Bible

The figure shows the ‘MapReduce Jobs’ table:

Figure 3.6.20. 2010 Page - MapReduce Jobs

Clicking on the ‘Job id’ will bring you to the MapReduce job details page which displays the
tasks status, various counters and details about the MapReduce job.

The figure shows a sample of some of the job counters:

Figure 3.6.21. 2010 Page - MapReduce Job - Counters

The next section on the main page is the ‘Queued Curator Jobs’ and ‘Last Successful Curator
Scans’ section. These tables show when the periodic scans are eligible to run and the last
successful scan’s details.

The figure shows the ‘Queued Curator Jobs’ and ‘Last Successful Curator Scans’ section:

Figure 3.6.22. 2010 Page - Queued and Successful Scans

145

Book of AHV

4.1 Architecture
4.1.1 Node Architecture

In AHV deployments, the Controller VM (CVM) runs as a VM and disks are presented using
PCI passthrough. This allows the full PCI controller (and attached devices) to be passed
through directly to the CVM and bypass the hypervisor. AHV is based upon CentOS KVM.

Figure 4.1.1. AHV Node

The AHV is built upon the CentOS KVM foundation and extends its base functionality to
include features like HA, live migration, etc.

AHV is validated as part of the Microsoft Server Virtualization Validation Program and is
validated to run Microsoft OS and applications.

4.1.2 KVM Architecture

Within KVM there are a few main components:
• KVM-kmod
 KVM kernel module
• Libvirtd
 An API, daemon and management tool for managing KVM and QEMU.
 Communication between Acropolis and KVM / QEMU occurs through libvirtd.
• Qemu-kvm
 A machine emulator and virtualizer that runs in userspace for every Virtual Machine
 (domain). In the AHV it is used for hardware-assisted virtualization and VMs run as
 HVMs.

The following figure shows the relationship between the various components:

Book of
AHVPART IV

146

The Nutanix Bible

Figure 4.1.2. KVM Component Relationship
Communication between Acropolis and KVM occurs via Libvirt.

Processor generation compatability
Similar to VMware’s Enhanced vMotion Capability (EVC) which allows VMs to move
between different processor generations; AHV will determine the lowest processor
generation in the cluster and constrain all QEMU domains to that level. This allows
mixing of processor generations within an AHV cluster and ensures the ability to live
migrate between hosts.

4.1.3 Configuration Maximums and Scalability

The following configuration maximums and scalability limits are applicable:
• Maximum cluster size: N/A – same as Nutanix cluster size
• Maximum vCPUs per VM: Number of physical cores per host
• Maximum memory per VM: 2TB
• Maximum VMs per host: N/A – Limited by memory
• Maximum VMs per cluster: N/A – Limited by memory

4.1.4 Networking

 AHV leverages Open vSwitch (OVS) for all VM networking. VM networking is configured
through Prism / ACLI and each VM nic is connected into a tap interface.

The following figure shows a conceptual diagram of the OVS architecture:

Figure 4.1.3. Open vSwitch Network Overview

147

Book of AHV

4.1.4.1 VM NIC Types

AHV supports the following VM network interface types:
• Access (default)
• Trunk (4.6 and above)

By default VM nics will be created as Access interfaces (similar to what you’d see with a VM
nic on a port group), however it is possible to expose a trunked interface up to the VM’s OS.

A trunked interface can be added with the following command:

 vm.nic_create <VM_NAME> vlan_mode=kTrunked trunked_networks=<ALLOWED_
 VLANS> network=<NATIVE_VLAN>

Example:

 vm.nic_create fooVM vlan_mode=kTrunked trunked_networks=10,20,30
 network=vlan.10

4.2 How It Works
4.2.1 iSCSI Multi-pathing

On each KVM host there is a iSCSI redirector daemon running which checks Stargate health
throughout the cluster using NOP OUT commands.

QEMU is configured with the iSCSI redirector as the iSCSI target portal. Upon a login
request, the redirector will perform and iSCSI login redirect to a healthy Stargate (preferably
the local one).

Figure 4.2.1. iSCSI Multi-pathing - Normal State

In the event where the active Stargate goes down (thus failing to respond to the NOP OUT
command), the iSCSI redirector will mark the local Stargate as unhealthy. When QEMU
retries the iSCSI login, the redirector will redirect the login to another healthy Stargate.

Figure 4.2.2. iSCSI Multi-pathing - Local CVM Down

148

The Nutanix Bible

Once the local Stargate comes back up (and begins responding to the NOP OUT commands),
the iSCSI redirector will perform a TCP kill to kill all connections to remote Stargates. QEMU
will then attempt an iSCSI login again and will be redirected to the local Stargate.

Figure 4.2.3. iSCSI Multi-pathing - Local CVM Back Up
4.2.2 IP Address Management

The Acropolis IP address management (IPAM) solution provides the ability to establish a
DHCP scope and assign addresses to VMs. This leverages VXLAN and OpenFlow rules to
intercept the DHCP request and respond with a DHCP response.

Here we show an example DHCP request using the Nutanix IPAM solution where the
Acropolis Master is running locally:

Figure 4.2.4. IPAM - Local Acropolis Master

If the Acropolis Master is running remotely, the same VXLAN tunnel will be leveraged to
handle the request over the network.

Figure 4.2.5. IPAM - Remote Acropolis Master

149

Book of AHV

Traditional DHCP / IPAM solutions can also be leveraged in an ‘unmanaged’ network scenario.

4.2.3 VM High Availability (HA)

AHV VM HA is a feature built to ensure VM availability in the event of a host or block outage.
In the event of a host failure the VMs previously running on that host will be restarted
on other healthy nodes throughout the cluster. The Acropolis Master is responsible for
restarting the VM(s) on the healthy host(s).

The Acropolis Master tracks host health by monitoring it’s connections to the libvirt on all cluster hosts:

Figure 4.2.6. HA - Host Monitoring
In the event the Acropolis Master becomes partitioned, isolated or fails a new Acropolis
Master will be elected on the healthy portion of the cluster. If a cluster becomes partitioned
(e.g X nodes can’t talk to the other Y nodes) the side with quorum will remain up and VM(s)
will be restarted on those hosts.

Default VM restart policy
By default any AHV cluster will do its best to restart VM(s) in the event of a host
failure. In this mode, when a host becomes unavailable, the previously running VMs
will be restarted on the remaining healthy hosts if possible. Since this is best effort
(meaning resources aren’t reserved) the ability to restart all VMs will be dependent
on available AHV resources.

There are two main types of resource reservations for HA:
• Reserve Hosts
 Reserve X number of hosts where X is the number of host failures to tolerate (e.g. 1,
 2, etc.)
 This is the default when all hosts with the same amount of RAM
• Reserve Segments
 Reserve Y resources across N hosts in the cluster. This will be a function of the
 cluster FT level, the size of the running VMs and the number of nodes in the cluster.
 This is the default when some hosts have different amounts of RAM

Pro tip
Use reserve hosts when:
• You have homogenous clusters (all hosts DO have the same amount of RAM)
• Consolidation ratio is higher priority than performance

Use reserve segments when:
• You have heterogeneous clusters (all hosts DO NOT have the same amount of RAM)
• Performance is higher priority than consolidation ratio

150

The Nutanix Bible

I’ll cover both reservation options in the following sections.

4.2.3.1 Reserve Hosts

By default the number of failures to tolerate will be the same as the cluster FT level (i.e. 1 for
FT1 aka RF2, 2 for FT2 aka RF3, etc.). It is possible to override this via acli.

Pro tip
You can override or manually set the number of reserved failover hosts with the
following ACLI command:

 acli ha.update num_reserved_hosts=<NUM_RESERVED>

The figure shows an example scenario with a reserved host:

Figure 4.2.6. HA - Reserved Host

In the event of a host failure VM(s) will be restarted on the reserved host(s):

Figure 4.2.7. HA - Reserved Host - Fail Over

If the failed host comes back the VM(s) will be live migrated back to the original host to
minimize any data movement for data locality:

Figure 4.2.8. HA - Reserved Host - Fail Back

151

Book of AHV

4.2.3.2 Reserve Segments

Reserve segments distributes the resource reservation across all hosts in a cluster. In this
scenario, each host will share a portion of the reservation for HA. This ensures the overall
cluster has enough failover capacity to restart VM(s) in the event of a host failure.

Pro tip
Keep your hosts balanced when using segment based reservation. This will give the
highest utilization and ensure not too many segments are reserved.

The figure shows an example scenario with reserved segments:

Figure 4.2.9. HA - Reserved Segment

In the event of a host failure VM(s) will be restarted throughout the cluster on the remaining
healthy hosts:

Figure 4.2.10. HA - Reserved Segment - Fail Over

Reserved segment(s) calculation
The system will automatically calculate the total number of reserved segments and
per host reservation. To gain some insight on how this is calculated some details on
the calculation can be found in the following text.
Acropolis HA uses fixed size segments to reserve enough space for successful VM
restart in case of host failure. The segment size corresponds to largest VM in the
system. The distinctive feature of Acropolis HA is the ability to pack multiple smaller
VMs into a single fixed size segment. In a cluster with VMs of varying size, a single
segment can accommodate multiple VMs, thus reducing fragmentation inherent to
any fixed size segment scheme.
The most efficient placement of VMs (least number of segments reserved) is defined
as bin-packing problem, a well known problem in computer science. The optimal
solution is NP-hard (exponential), but heuristic solutions can come close to optimal
for the common case. Nutanix will continue improving its placement algorithms. We

152

The Nutanix Bible

expect to have 0.25 extra overhead for the common case in future versions. Today,
the fragmentation overhead varies between 0.5 and 1 giving a total overhead of 1.5-2
per configured host failure.
When using a segment based reservation there are a few key constructs that come
in to play:
• Segment size = Largest running VM’s memory footprint (GB)
• Most loaded host = Host running VMs with most memory (GB)
• Fragmentation overhead = 0.5 - 1
Based upon these inputs you can calculate the expected number of reserved segments:
• Reserved segments = (Most loaded host / Segment size) x (1 + Fragmentation

overhead)

4.3 Administration
More coming soon!

4.3.1 Important Pages
More coming soon!

4.3.2 Command Reference
Enable 10GbE links only on OVS
Description: Enable 10g only on bond0 for local host
 manage_ovs --interfaces 10g update_uplinks

Description: Show ovs uplinks for full cluster
 allssh “manage_ovs --interfaces 10g update_uplinks”

Show OVS uplinks
Description: Show ovs uplinks for local host
 manage_ovs show_uplinks

Description: Show ovs uplinks for full cluster
 allssh “manage_ovs show_uplinks”

Show OVS interfaces
Description: Show ovs interfaces for local host
 manage_ovs show_interfaces

Show interfaces for full cluster
 allssh “manage_ovs show_interfaces”

Show OVS switch information
Description: Show switch information
 ovs-vsctl show

List OVS bridges
Description: List bridges
 ovs-vsctl list br

153

Book of AHV

Show OVS bridge information
Description: Show OVS port information
 ovs-vsctl list port br0
 ovs-vsctl list port <bond>

Show OVS interface information
Description: Show interface information
 ovs-vsctl list interface br0

Show ports / interfaces on bridge
Description: Show ports on a bridge
 ovs-vsctl list-ports br0

Description: Show ifaces on a bridge
 ovs-vsctl list-ifaces br0

Create OVS bridge
Description: Create bridge
 ovs-vsctl add-br <bridge>

Add ports to bridge
Description: Add port to bridge
 ovs-vsctl add-port <bridge> <port>

Description: Add bond port to bridge
 ovs-vsctl add-bond <bridge> <port> <iface>

Show OVS bond details
Description: Show bond details
 ovs-appctl bond/show <bond>

Example:
 ovs-appctl bond/show bond0

Set bond mode and configure LACP on bond
Description: Enable LACP on ports
 ovs-vsctl set port <bond> lacp=<active/passive>

Description: Enable on all hosts for bond0
 for i in `hostips`;do echo $i; ssh $i source /etc/profile > /dev/null 2>&1;
 bovs-vsctl set port bond0 lacp=active;done

Show LACP details on bond
Description: Show LACP details
 ovs-appctl lacp/show <bond>

154

The Nutanix Bible

Set bond mode
Description: Set bond mode on ports
 ovs-vsctl set port <bond> bond_mode=<active-backup, balance-slb, balance-tcp>

Show OpenFlow information
Description: Show OVS openflow details
 ovs-ofctl show br0

Description: Show OpenFlow rules
ovs-ofctl dump-flows br0

Get QEMU PIDs and top information
Description: Get QEMU PIDs
 ps aux | grep qemu | awk ‘{print $2}’

Description: Get top metrics for specific PID
 top -p <PID>

Get active Stargate for QEMU processes
Description: Get active Stargates for storage I/O for each QEMU processes
 netstat –np | egrep tcp.*qemu

4.3.3 Metrics and Thresholds
More coming soon!

4.3.4 Troubleshooting & Advanced Administration

Check iSCSI Redirector Logs
Description: Check iSCSI Redirector Logs for all hosts
 for i in `hostips`; do echo $i; ssh root@$i cat /var/log/iscsi_redirector;done

Example for single host
 Ssh root@<HOST IP>
 Cat /var/log/iscsi_redirector

Monitor CPU steal (stolen CPU)
Description: Monitor CPU steal time (stolen CPU)
Launch top and look for %st (bold below)
 Cpu(s): 0.0%us, 0.0%sy, 0.0%ni, 96.4%id, 0.0%wa, 0.0%hi, 0.1%si, 0.0%st

Monitor VM network resource stats
Description: Monitor VM resource stats
Launch virt-top
 Virt-top

Go to networking page
2 – Networking

155

Book of vSphere

5.1 Architecture

5.1.1 Node Architecture

In ESXi deployments, the Controller VM (CVM) runs as a VM and disks are presented using
VMDirectPath I/O. This allows the full PCI controller (and attached devices) to be passed
through directly to the CVM and bypass the hypervisor.

Figure 5.1.1. ESXi Node Architecture

5.1.2 Configuration Maximums and Scalability

The following configuration maximums and scalability limits are applicable:
• Maximum cluster size: 64
• Maximum vCPUs per VM: 128
• Maximum memory per VM: 4TB
• Maximum VMs per host: 1,024
• Maximum VMs per cluster: 8,000 (2,048 per datastore if HA is enabled)
NOTE: As of vSphere 6.0

5.1.3 Networking

Each ESXi host has a local vSwitch which is used for intra-host communication between the
Nutanix CVM and host. For external communication and VMs a standard vSwitch (default) or
dvSwitch is leveraged.

The local vSwitch (vSwitchNutanix) is for local communication between the Nutanix CVM
and ESXi host. The host has a vmkernel interface on this vSwitch (vmk1 - 192.168.5.1) and
the CVM has a interface bound to a port group on this internal switch (svm-iscsi-pg -
192.168.5.2). This is the primary storage communication path.

Book of
vSpherePART V

156

The Nutanix Bible

The external vSwitch can be a standard vSwitch or a dvSwitch. This will host the external
interfaces for the ESXi host and CVM as well as the port groups leveraged by VMs on the
host. The external vmkernel interface is leveraged for host management, vMotion, etc. The
external CVM interface is used for communication to other Nutanix CVMs. As many port
groups can be created as required assuming the VLANs are enabled on the trunk.

The following figure shows a conceptual diagram of the vSwitch architecture:

Figure 5.1.2. ESXi vSwitch Network Overview

Uplink and Teaming policy
It is recommended to have dual ToR switches and uplinks across both switches
for switch HA. By default the system will have uplink interfaces in active/passive
mode. For upstream switch architectures that are capable of having active/active
uplink interfaces (e.g. vPC, MLAG, etc.) that can be leveraged for additional network
throughput.

5.2 How It Works
5.2.1 Array Offloads – VAAI

The Nutanix platform supports the VMware APIs for Array Integration (VAAI), which allows the
hypervisor to offload certain tasks to the array. This is much more efficient as the hypervisor
doesn’t need to be the ‘man in the middle’. Nutanix currently supports the VAAI primitives
for NAS, including the ‘full file clone’, ‘fast file clone’, and ‘reserve space’ primitives. Here’s
a good article explaining the various primitives: http://cormachogan.com/2012/11/08/vaai-
comparison-block-versus-nas/.

For both the full and fast file clones, a DSF ‘fast clone’ is done, meaning a writable snapshot
(using re-direct on write) for each clone that is created. Each of these clones has its own
block map, meaning that chain depth isn’t anything to worry about. The following will
determine whether or not VAAI will be used for specific scenarios:
• Clone VM with Snapshot –> VAAI will NOT be used
• Clone VM without Snapshot which is Powered Off –> VAAI WILL be used
• Clone VM to a different Datastore/Container –> VAAI will NOT be used
• Clone VM which is Powered On –> VAAI will NOT be used

157

Book of vSphere

These scenarios apply to VMware View:
• View Full Clone (Template with Snapshot) –> VAAI will NOT be used
• View Full Clone (Template w/o Snapshot) –> VAAI WILL be used
• View Linked Clone (VCAI) –> VAAI WILL be used

You can validate VAAI operations are taking place by using the ‘NFS Adapter’ Activity Traces page.

5.2.2 CVM Autopathing aka Ha.py

In this section, I’ll cover how CVM ‘failures’ are handled (I’ll cover how we handle component
failures in future update). A CVM ‘failure’ could include a user powering down the CVM, a
CVM rolling upgrade, or any event which might bring down the CVM. DSF has a feature called
autopathing where when a local CVM becomes unavailable, the I/Os are then transparently
handled by other CVMs in the cluster. The hypervisor and CVM communicate using a private
192.168.5.0 network on a dedicated vSwitch (more on this above). This means that for all
storage I/Os, these are happening to the internal IP addresses on the CVM (192.168.5.2). The
external IP address of the CVM is used for remote replication and for CVM communication.

The following figure shows an example of what this looks like:

Figure 5.2.1. ESXi Host Networking

In the event of a local CVM failure, the local 192.168.5.2 addresses previously hosted by the
local CVM are unavailable. DSF will automatically detect this outage and will redirect these
I/Os to another CVM in the cluster over 10GbE. The re-routing is done transparently to the
hypervisor and VMs running on the host. This means that even if a CVM is powered down,
the VMs will still continue to be able to perform I/Os to DSF. Once the local CVM is back up
and available, traffic will then seamlessly be transferred back and served by the local CVM.
The following figure shows a graphical representation of how this looks for a failed CVM:

Figure 5.2.2. ESXi Host Networking - Local CVM Down

158

The Nutanix Bible

5.3 Administration

5.3.1 Important Pages
More coming soon!

5.3.2 Command Reference

ESXi cluster upgrade

Description: Perform an automated upgrade of ESXi hosts using the CLI
Upload upgrade offline bundle to a Nutanix NFS container
Log in to Nutanix CVM
Perform upgrade

 for i in `hostips`;do echo $i && ssh root@$i “esxcli software vib install
 -d /vmfs/volumes/<Datastore Name>/<Offline bundle name>”;done

Example

 for i in `hostips`;do echo $i && ssh root@$i “esxcli software vib install
 -d /vmfs/volumes/NTNX-upgrade/update-from-esxi5.1-5.1_update01.zip”;done

Performing a rolling reboot of ESXi hosts: For PowerCLI on automated hosts reboots

Restart ESXi host services

Description: Restart each ESXi hosts services in a incremental manner

 for i in `hostips`;do ssh root@$i “services.sh restart”;done

Display ESXi host nics in ‘Up’ state

Description: Display the ESXi host’s nics which are in a ‘Up’ state

for i in `hostips`;do echo $i && ssh root@$i esxcfg-nics -l | grep Up;done

Display ESXi host 10GbE nics and status

Description: Display the ESXi host’s 10GbE nics and status

 for i in `hostips`;do echo $i && ssh root@$i esxcfg-nics -l | grep
 ixgbe;done

Display ESXi host active adapters

Description: Display the ESXi host’s active, standby and unused adapters

 for i in `hostips`;do echo $i && ssh root@$i “esxcli network vswitch
 standard policy failover get --vswitch-name vSwitch0”;done

Display ESXi host routing tables

Description: Display the ESXi host’s routing tables

 for i in `hostips`;do ssh root@$i ‘esxcfg-route -l’;done

159

Book of vSphere

Check if VAAI is enabled on datastore

Description: Check whether or not VAAI is enabled/supported for a datastore

 vmkfstools -Ph /vmfs/volumes/<Datastore Name>

Set VIB acceptance level to community supported

Description: Set the vib acceptance level to CommunitySupported allowing for 3rd party
vibs to be installed

 esxcli software acceptance set --level CommunitySupported

Install VIB

Description: Install a vib without checking the signature

 esxcli software vib install --viburl=/<VIB directory>/<VIB name> --no-sig-check

OR

 esxcli software vib install --depoturl=/<VIB directory>/<VIB name> --no-sig-check

Check ESXi ramdisk space

Description: Check free space of ESXi ramdisk

 for i in `hostips`;do echo $i; ssh root@$i ‘vdf -h’;done

Clear pynfs logs

Description: Clears the pynfs logs on each ESXi host

 for i in `hostips`;do echo $i; ssh root@$i ‘> /pynfs/pynfs.log’;done

5.3.3 Metrics and Thresholds
More coming soon!

5.3.4 Troubleshooting & Advanced Administration
More coming soon!

160

The Nutanix Bible

6.1 Architecture

6.1.1 Node Architecture
In Hyper-V deployments, the Controller VM (CVM) runs as a VM and disks are presented
using disk passthrough.

Figure 6.1.1. Hyper-V Node Architecture

6.1.2 Configuration Maximums and Scalability

The following configuration maximums and scalability limits are applicable:
• Maximum cluster size: 64
• Maximum vCPUs per VM: 64
• Maximum memory per VM: 1TB
• Maximum VMs per host: 1,024
• Maximum VMs per cluster: 8,000
NOTE: As of Hyper-V 2012 R2

6.1.3 Networking

Each Hyper-V host has a internal only virtual switch which is used for intra-host
communication between the Nutanix CVM and host. For external communication and VMs a
external virtual switch (default) or logical switch is leveraged.

The internal switch (InternalSwitch) is for local communication between the Nutanix CVM
and Hyper-V host. The host has a virtual ethernet interface (vEth) on this internal switch
(192.168.5.1) and the CVM has a vEth on this internal switch (192.168.5.2). This is the primary
storage communication path.

The external vSwitch can be a standard virtual switch or a logical switch. This will host

Book of
Hyper-VPART VI

161

the external interfaces for the Hyper-V host and CVM as well as the logical and VM
networks leveraged by VMs on the host. The external vEth interface is leveraged for host
management, live migration, etc. The external CVM interface is used for communication to
other Nutanix CVMs. As many logical and VM networks can be created as required assuming
the VLANs are enabled on the trunk.

The following figure shows a conceptual diagram of the virtual switch architecture:

Figure 6.1.2. Hyper-V Virtual Switch Network Overview

Uplink and Teaming policy
It is recommended to have dual ToR switches and uplinks across both switches for
switch HA. By default the system will have the LBFO team in switch independent
mode which doesn’t require any special configuration.

6.2 How It Works

6.2.1 Array Offloads – ODX
The Nutanix platform supports the Microsoft Offloaded Data Transfers (ODX), which allow
the hypervisor to offload certain tasks to the array. This is much more efficient as the
hypervisor doesn’t need to be the ‘man in the middle’. Nutanix currently supports the ODX
primitives for SMB, which include full copy and zeroing operations. However, contrary to
VAAI which has a ‘fast file’ clone operation (using writable snapshots), the ODX primitives
do not have an equivalent and perform a full copy. Given this, it is more efficient to rely on
the native DSF clones which can currently be invoked via nCLI, REST, or Powershell CMDlets.
Currently ODX IS invoked for the following operations:
• In VM or VM to VM file copy on DSF SMB share
• SMB share file copy

Deploy the template from the SCVMM Library (DSF SMB share) – NOTE: Shares must be
added to the SCVMM cluster using short names (e.g., not FQDN). An easy way to force this
is to add an entry into the hosts file for the cluster (e.g. 10.10.10.10 nutanix-130).

Book of Hyper-V

162

The Nutanix Bible

ODX is NOT invoked for the following operations:
• Clone VM through SCVMM
• Deploy template from SCVMM Library (non-DSF SMB Share)
• XenDesktop Clone Deployment

You can validate ODX operations are taking place by using the ‘NFS Adapter’ Activity
Traces page (yes, I said NFS, even though this is being performed via SMB). The
operations activity show will be ‘NfsSlaveVaaiCopyDataOp‘ when copying a vDisk and
‘NfsSlaveVaaiWriteZerosOp‘ when zeroing out a disk.

6.3 Administration

6.3.1 Important Pages
More coming soon!

6.3.2 Command Reference

Execute command on multiple remote hosts

Description: Execute a powershell on one or many remote hosts

 $targetServers = “Host1”,”Host2”,”Etc”
 Invoke-Command -ComputerName $targetServers {
 <COMMAND or SCRIPT BLOCK>
 }

Check available VMQ Offloads

Description: Display the available number of VMQ offloads for a particular host

 gwmi –Namespace “root\virtualization\v2” –Class Msvm_VirtualEthernetSwitch
 | select elementname, MaxVMQOffloads

Disable VMQ for VMs matching a specific prefix

Description: Disable VMQ for specific VMs

 $vmPrefix = “myVMs”
 Get-VM | Where {$_.Name -match $vmPrefix} | Get-VMNetworkAdapter | Set-
 VMNetworkAdapter -VmqWeight 0

Enable VMQ for VMs matching a certain prefix

Description: Enable VMQ for specific VMs

 $vmPrefix = “myVMs”
 Get-VM | Where {$_.Name -match $vmPrefix} | Get-VMNetworkAdapter | Set-
 VMNetworkAdapter -VmqWeight 1

Power-On VMs matching a certain prefix

Description: Power-On VMs matchin a certain prefix

 $vmPrefix = “myVMs”
 Get-VM | Where {$_.Name -match $vmPrefix -and $_.StatusString -eq “Stopped”}
 | Start-VM

163

Book of Hyper-V

Shutdown VMs matching a certain prefix

Description: Shutdown VMs matchin a certain prefix

 $vmPrefix = “myVMs”
 Get-VM | Where {$_.Name -match $vmPrefix -and $_.StatusString -eq
 “Running”}} | Shutdown-VM -RunAsynchronously

Stop VMs matching a certain prefix

Description: Stop VMs matchin a certain prefix

 $vmPrefix = “myVMs”
 Get-VM | Where {$_.Name -match $vmPrefix} | Stop-VM

Get Hyper-V host RSS settings

Description: Get Hyper-V host RSS (recieve side scaling) settings

 Get-NetAdapterRss

Check Winsh and WinRM connectivity

Description: Check Winsh and WinRM connectivity / status by performing a sample query
which should return the computer system object not an error

 allssh “winsh “get-wmiobject win32_computersystem”

6.3.3 Metrics and Thresholds
More coming soon!

6.3.4 Troubleshooting & Advanced Administration
More coming soon!

Afterword
Thank you for reading The Nutanix Bible!

Stay tuned for many more upcoming updates and enjoy the Nutanix platform!

JK

GH

164

The Nutanix Bible

